Abscisic acid (ABA) is a key hormone for plant growth, development, and stress adaptation. Perception of ABA through four types of receptors has been reported. We show here that impairment of ABA perception through the PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) branch reduces vegetative growth and seed production and leads to a severe open stomata and ABA-insensitive phenotype, even though other branches for ABA perception remain functional. An Arabidopsis thaliana sextuple mutant impaired in six PYR/PYL receptors, namely PYR1, PYL1, PYL2, PYL4, PYL5, and PYL8, was able to germinate and grow even on 100 mM ABA. Wholerosette stomatal conductance (Gst) measurements revealed that leaf transpiration in the sextuple pyr/pyl mutant was higher than in the ABA-deficient aba3-1 or ABA-insensitive snrk2.6 mutants. The gradually increasing Gst values of plants lacking three, four, five, and six PYR/PYLs indicate quantitative regulation of stomatal aperture by this family of receptors. The sextuple mutant lacked ABA-mediated activation of SnRK2s, and ABA-responsive gene expression was dramatically impaired as was reported in snrk2.2/2.3/2.6. In summary, these results show that ABA perception by PYR/PYLs plays a major role in regulation of seed germination and establishment, basal ABA signaling required for vegetative and reproductive growth, stomatal aperture, and transcriptional response to the hormone.
Cell size and secondary cell wall patterning are crucial for the proper functioning of xylem vessel elements in the vascular tissues of plants. Through detailed anatomical characterization of Arabidopsis thaliana hypocotyls, we observed that mutations in the putative spermine biosynthetic gene ACL5 severely affected xylem specification: the xylem vessel elements of the acl5 mutant were small and mainly of the spiral type, and the normally predominant pitted vessels as well as the xylem fibers were completely missing. The cell-specific expression of ACL5 in the early developing vessel elements, as detected by in situ hybridization and reporter gene analyses, suggested that the observed xylem vessel defects were caused directly by the acl5 mutation. Exogenous spermine prolonged xylem element differentiation and stimulated cell expansion and cell wall elaboration in xylogenic cell cultures of Zinnia elegans, suggesting that ACL5 prevents premature death of the developing vessel elements to allow complete expansion and secondary cell wall patterning. This was further supported by our observations that the vessel elements of acl5 seemed to initiate the cell death program too early and that the xylem defects associated with acl5 could be largely phenocopied by induction of premature, diphtheria toxin-mediated cell death in the ACL5-expressing vessel elements. We therefore provide, for the first time, mechanistic evidence for the function of ACL5 in xylem specification through its action on the duration of xylem element differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.