In cases of pulp injury, capping materials are used to enhance tertiary dentin formation; Ca(OH)(2) and MTA are the current gold standards. The aim of this study was to evaluate the capacity of a new calcium-silicate-based restorative cement to induce pulp healing in a rat pulp injury model. For that purpose, cavities with mechanical pulp exposure were prepared on maxillary first molars of 27 six-week-old male rats, and damaged pulps were capped with either the new calcium-silicate-based restorative cement (Biodentine), MTA, or Ca(OH)(2). Cavities were sealed with glass-ionomer cement, and the repair process was assessed at several time-points. At day 7, our results showed that both the evaluated cement and MTA induced cell proliferation and formation of mineralization foci, which were strongly positive for osteopontin. At longer time-points, we observed the formation of a homogeneous dentin bridge at the injury site, secreted by cells displaying an odontoblastic phenotype. In contrast, the reparative tissue induced by Ca(OH)(2) showed porous organization, suggesting a reparative process different from those induced by calcium silicate cements. Analysis of these data suggests that the evaluated cement can be used for direct pulp-capping.
The repair of dental pulp by direct capping with calcium hydroxide or by implantation of bioactive extracellular matrix (ECM) molecules implies a cascade of four steps: a moderate inflammation, the commitment of adult reserve stem cells, their proliferation and terminal differentiation. The link between the initial inflammation and cell commitment is not yet well established but appears as a potential key factor in the reparative process. Either the release of cytokines due to inflammatory events activates resident stem (progenitor) cells, or inflammatory cells or pulp fibroblasts undergo a phenotypic conversion into osteoblast/odontoblast-like progenitors implicated in reparative dentin formation. Activation of antigen-presenting dendritic cells by mild inflammatory processes may also promote osteoblast/odontoblast-like differentiation and expression of ECM molecules implicated in mineralization. Recognition of bacteria by specific odontoblast and fibroblast membrane receptors triggers an inflammatory and immune response within the pulp tissue that would also modulate the repair process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.