During olive oil production, large volumes of water are generated and subsequently discarded. Olives contain a variety of bioactive components, and some of them, according to their partition coefficients, end up in the water phase. The current investigation aimed at comparing different methods for the extraction of biologically active components of the olive mill waste waters (OMWW) and evaluating the in vitro antioxidant and anti-inflammatory activities of the resulting extracts. The results indicate that OMWW extracts are able to inhibit human LDL oxidation (a process involved in the pathogenesis of atherosclerosis) and to scavenge superoxide anions and hypochlorous acid at concentrations as low as 20 ppm. Finally, two of the three extracts also inhibited the production of leukotrienes by human neutrophils. The potency of the extracts depended on their degree of refinement: extracts containing only low molecular weight phenols were the most effective.
11The antiradical activity, polyphenols, flavonoids and total condensed tannins contents have been determined in the case of seven local 12 edible Brassicaceae, i.e. Italian kale, broccoli, Savoy and white cabbage, cauliflower, green cauliflower and Brussels sprouts. Rapid spec-13 trophotometric methods were applied. The results achieved were compared with the quali-quantitative information obtained by HPLC/ 14 DAD and HPLC/MS. The polyphenolic compounds detected were: kaempferol and quercetin glycosides and hydroxycinnamic esters. 15 The EC 50 values ranged from 81.45 to 917.81 mg sample/mg DPPH Å and the total phenolic content from 4.30 to 13.80 gallic acid equiv-16 alents (mg gallic acid/g sample). The peculiar characteristics of these vegetables can be evaluated and can increase their value as func-17 tional food. 18
In this study polyphenolic compounds extracted from olive fruits of five registered cultivars were analyzed. A solid-liquid extraction (LSE) procedure with Extrelut cartridge (diatomaceous earth) using different eluents was developed to obtain polyphenolic compounds. HPLC-DAD and HPLC-MS methods were applied for the quali-quantitative analysis of each fraction obtained from LSE. The results of this work show that the LSE procedure with diatomaceous earth cartridge supplies a rapid and reproducible fractioning method able to obtain a quantitative recovery of all compounds and to collect fractions directly analyzed by HPLC. A comparison among different cultivars shows significant quantitative differences in some polyphenols, such as verbascoside, anthocyanic compounds, and oleuropein derivatives.
Fresh aerial parts of different chicory varieties: green chicory (c.v. "Catalogna"), two red chicory varieties ("radicchio rosso di Chioggia" and "radicchio rosso di Treviso"), and Witloof or Belgian endive were analyzed by HPLC/DAD/MS. The chromatographic fingerprint was diagnostic for each variety. A monocaffeoyl tartaric acid, chlorogenic acid, and chicoric acid were detected in all the varieties, while cyanidin 3-O-glucoside, delphinidin 3-O-(6'' malonyl) glucoside, and cyanidin 3-O-(6'' malonyl) glucoside were the main phenolic compounds in the red varieties. The flavonoidic compounds, quercetin 3-O-glucuronide and luteolin 7-O-glucuronide, were absent in the Witloof sample. The phenolic compounds from total leaves were the same as those obtained from only the colored parts; nevertheless, the total amount was remarkably lower with a decrease of up to 80% for Belgian endive. Chemical stability at high temperature was observed for the phenolic fraction from the green variety after decoction at 100 degrees C for 30 min.
The production of olive oil yields a considerable amount of waste water, which is a powerful pollutant and is currently discarded. Polyphenols and other natural antioxidants, extracted from olives during oil extraction process, partially end up in the waste waters. Experimental and commercial olive oil waste waters from four Mediterranean countries were analyzed for a possible recovering of these biologically interesting constituents. Identification and quantitation of the main polyphenols were carried out by applying HPLC-DAD and HPLC-MS methods. Representative samples of ripe olives were also analyzed at the same time to correlate, if possible, their polyphenolic profiles with those of the corresponding olive oil waste waters. The results demonstrate that Italian commercial olive oil waste waters were the richest in total polyphenolic compounds with amounts between 150 and 400 mg/100 mL of waste waters. These raw, as yet unused, matrices could represent an interesting and alternative source of biologically active polyphenols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.