The reactions of CpZr(CH(3))(3), 1, and Cp(2)Zr(CH(3))(2), 2, with partially dehydroxylated silica, silica-alumina, and alumina surfaces have been carried out with careful identification of the resulting surface organometallic complexes in order to probe the relationship between catalyst structure and polymerization activity. The characterization of the supported complexes has been achieved in most cases by in situ infrared spectroscopy, surface microanalysis, qualitative and quantitative analysis of evolved gases during surface reactions with labeled surface, solid state (1)H and (13)C NMR using (13)C-enriched compounds, and EXAFS. 1 and 2 react with silica(500) and silica-alumina(500) by simple protonolysis of one Zr-Me bond by surface silanols with formation of a single well-defined neutral compound. In the case of silica-alumina, a fraction of the supported complexes exhibits some interactions with electronically unsaturated surface aluminum sites. 1 and 2 also react with the hydroxyl groups of gamma-alumina(500), leading to several surface structures. Correlation between EXAFS and (13)C NMR data suggests, in short, two main surface structures having different environments for the methyl group: [Al](3)-OZrCp(CH(3))(2) and [Al](2)-OZrCp(CH(3))(mu-CH(3))-[Al] for the monoCp series and [Al](2)-OZrCp(2)(CH(3)) and [Al]-OZrCp(2)(mu-CH(3))-[Al] for the bisCp series. Ethylene polymerization has been carried out with all the supported complexes under various reaction conditions. Silica-supported catalysts in the absence of any cocatalyst exhibited no activity whatsoever for ethylene polymerization. When the oxide contained Lewis acidic sites, the resulting surface species were active. The activity, although improved by the presence of additional cocatalysts, remained very low by comparison with that of the homogeneous metallocene systems. This trend has been interpreted on the basis of various possible parameters, including the (p-pi)-(d-pi) back-donation of surface oxygen atoms to the zirconium center.
The solute-solvent interactions and the site-site distances between toluene and ionic liquids (ILs) 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [BMMIm][NTf2] and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [BMIm][NTf2] at various molar ratios were determined by NMR experiments (1D NMR, rotating-frame Overhauser effect spectroscopy (ROESY)) and by molecular simulation using an atomistic force field. The difference in behavior of toluene in these ILs has been related to the presence of H-bonding between the C2-H and the anion in [BMIm][NTf2] generating a stronger association (>20 kJ.mol-1) than in the case of [BMMIm][NTf2]. Consequently, toluene cannot cleave this H-bond in [BMIm][NTf2] which remains in large aggregates of ionic pairs. However, toluene penetrates the less strongly bonded network of [BMMIm][NTf2] and interacts with [BMMIm] cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.