Interindividual clinical variability in the course of SARS-CoV-2 infection is immense. We report that at least 101 of 987 patients with life-threatening COVID-19 pneumonia had neutralizing IgG auto-Abs against IFN-ω (13 patients), the 13 types of IFN-α (36), or both (52), at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1,227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 were men. A B cell auto-immune phenocopy of inborn errors of type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
Clinical outcome upon infection with SARS-CoV-2 ranges from silent infection to lethal COVID-19. We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern TLR3- and IRF7-dependent type I interferon (IFN) immunity to influenza virus, in 659 patients with life-threatening COVID-19 pneumonia, relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally define LOF variants in 23 patients (3.5%), aged 17 to 77 years, underlying autosomal recessive or dominant deficiencies. We show that human fibroblasts with mutations affecting this pathway are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
A progressive increase in the incidence of vancomycin resistance in strains of Enterococcus faecium (VREF) has severely constrained treatment options for patients with infection caused by this emerging pathogen. Quinupristin/dalfopristin (Synercid), the first injectable streptogramin antibiotic, is active in vitro against VREF, with an MIC90 of 1.0 mg/L. We studied the clinical efficacy and safety of quinupristin/dalfopristin in the treatment of VREF infection. Two prospective studies were conducted simultaneously. The first enrolled only patients with VREF infection; the second included patients with infection caused by other gram-positive bacterial pathogens in addition to VREF. Patients were enrolled if they had signs and symptoms of active infection and no appropriate alternative antibiotic therapy. The recommended treatment regimen of quinupristin/dalfopristin was 7.5 mg/kg i.v. every 8 h for a duration judged appropriate by the investigator. A total of 396 patients with VREF infection were enrolled. The most frequent indications for treatment included intra-abdominal infection, bacteraemia of unknown origin, urinary tract infection, catheter-related bacteraemia, and skin and skin structure infection. This patient population had a high prevalence of severe underlying illness, including a history of diabetes mellitus, transplantation, mechanical ventilation, dialysis, chronic liver disease with cirrhosis and oncological disorders. The mean (+/- S.D.) duration of treatment was 14.5 +/- 10.7 days (range: 1-108). The majority of patients (82.1%) were treated every 8 h, as assessed on day 2 of treatment, while 15.9% were treated every 12 h. The clinical success rate was 73.6% [142/193 clinically evaluable patients; 95% confidence interval (CI): 67.4%, 79.8%], the bacteriological success rate 70.5% (110/156 bacteriologically evaluable patients; 95% CI: 63.4%, 77.7%) and the overall success (both clinical and bacteriological success) rate 65.8% (102/156 bacteriologically evaluable patients; 95% CI: 57.9%, 72.9%). VREF bacteraemia at entry, mechanical ventilation and laparotomy were associated with a worse outcome. Quinupristin/dalfopristin was generally well tolerated. The most common systemic adverse events related to treatment were arthralgias (9.1%) and myalgias (6.6%). Related laboratory abnormalities were infrequent. In these severely ill patients with VREF infection and no other clinically appropriate therapeutic alternatives, quinupristin/dalfopristin demonstrated substantial efficacy and a good nervous system, cardiovascular, gastrointestinal, renal and hepatic tolerability.
Objectives Molecular assays on nasopharyngeal swabs remain the cornerstone of COVID-19 diagnostic. The high technicalities of nasopharyngeal sampling and molecular assays, as well as scarce resources of reagents, limit our testing capabilities. Several strategies failed, to date, to fully alleviate this testing process (e.g. saliva sampling or antigen testing on nasopharyngeal samples). We assessed the clinical performances of SARS-CoV-2 nucleocapsid antigen (N-antigen) ELISA detection in serum or plasma using the COVID-19 Quantigene® (AAZ, France) assay. Methods Performances were determined on 63 sera from 63 non-COVID patients and 227 serum samples (165 patients) from the French COVID and CoV-CONTACT cohorts with RT-PCR confirmed SARS-CoV-2 infection, including 142 serum (114 patients) obtained within 14 days after symptoms’ onset. Results Specificity was 98.4% (95% confidence interval [CI], 95.3 to 100). Sensitivity was 79.3% overall (180/227, 95% CI, 74.0 to 84.6) and 93.0% (132/142, 95% CI, 88.7 to 97.2) within 14 days after symptoms onset. 91 included patients had a sera and nasopharyngeal swabs collected in the same 24 hours. Among those with high nasopharyngeal viral loads, i.e. Ct value below 30 and 33, only 1/50 and 4/67 tested negative for N-antigenemia, respectively. Among those with a negative nasopharyngeal RT-PCR, 8/12 presented positive N-antigenemia; the lower respiratory tract was explored for 6 of these 8 patients, showing positive RT-PCR in 5 cases. Conclusion This is the first evaluation of a commercially available serum N-antigen detection assay. It presents a robust specificity and sensitivity within the first 14 days after symptoms onset. This approach provides a valuable new option for COVID-19 diagnosis, only requiring a blood draw and easily scalable in all clinical laboratories.
Clinicians caring for patients with vancomycin-resistant Enterococcus faecium (VREF) infections face severe constraints in the selection of treatment. Quinupristin/dalfopristin (Synercid) is active in vitro against VREF, with a MIC(90) of 1.0 microg/mL. We investigated the clinical efficacy and safety of this agent in a multicenter, prospective, noncomparative, emergency-use study of 396 patients. Patients were included if they had signs and symptoms of active infection, including bacteremia of unknown origin, intra-abdominal infection, and skin and skin-structure infection, with no alternative antibiotic therapy available. The mean duration of treatment was 20 days (range, 4-40 days). The clinical response rate was 68.8% in the evaluable subset, and the overall response rate was 65.6%. The most common adverse events related to quinupristin/dalfopristin were arthralgias and myalgias. Related laboratory abnormalities were rare. In this severely ill patient population, quinupristin/dalfopristin was efficacious and demonstrated an acceptable safety profile in the treatment of VREF infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.