BackgroundOne major challenge in understanding how biodiversity is organized is finding out whether communities of competing species are shaped exclusively by species-level differences in ecological traits (niche theory), exclusively by random processes (neutral theory of biodiversity), or by both processes simultaneously. Communities of species competing for a pulsed resource are a suitable system for testing these theories: due to marked fluctuations in resource availability, the theories yield very different predictions about the timing of resource use and the synchronization of the population dynamics between the competing species. Accordingly, we explored mechanisms that might promote the local coexistence of phytophagous insects (four sister species of the genus Curculio) competing for oak acorns, a pulsed resource.Methodology/Principal FindingsWe analyzed the time partitioning of the exploitation of oak acorns by the four weevil species in two independent communities, and we assessed the level of synchronization in their population dynamics. In accordance with the niche theory, overall these species exhibited marked time partitioning of resource use, both within a given year and between different years owing to different dormancy strategies between species, as well as distinct demographic patterns. Two of the four weevil species, however, consistently exploited the resource during the same period of the year, exhibited a similar dormancy pattern, and did not show any significant difference in their population dynamics.Conclusions/SignificanceThe marked time partitioning of the resource use appears as a keystone of the coexistence of these competing insect species, except for two of them which are demographically nearly equivalent. Communities of consumers of pulsed resources thus seem to offer a promising avenue for developing a unifying theory of biodiversity in fluctuating environments which might predict the co-occurrence, within the same community, of species that are ecologically either very similar, or very different.
Spatial distribution in mammals, and thereby home range size, is influenced by many different factors including body size, sex, age, reproductive status, season, availability of forage, availability of water, fragmentation of landscape, trophic level and intra‐ and inter‐specific competition. Using linear mixed models, we looked for factors shaping the variation in size of spring‐summer and winter home ranges for 51 radio‐collared adult female roe deer at Trois Fontaines forest, Champagne–Ardenne, France (1996–2005). Home range size of females was larger in winter than in spring–summer, decreased with age, and decreased with increasing quality. Females in low quality areas adjusted the size of their home range to include more patches of habitat so that all female deer obtained similar amounts of food resources (total biomass of 6.73±2.34 tons (mean±SE) for each home range). Such adjustments of home range size in response to patchiness of resources led to marked between‐female variation in home range size. Our results demonstrate that roe deer females have different tactics of habitat use according to spatial variations in habitat quality so that females get similar food resources in highly productive environments such as the Trois Fontaines forest.
In animals, physiological mechanisms underlying reproductive and actuarial senescence remain poorly understood. Immunosenescence, the decline in the ability to display an efficient immune response with increasing age, is likely to influence both reproductive and actuarial senescence through increased risk of disease. Evidence for such a link has been reported from laboratory animal models but has been poorly investigated in the wild, where variation in resource acquisitions usually drives life-history trade-offs. We investigated immunosenescence patterns over 7 years in both sexes of two contrasting roe deer populations (Capreolus capreolus). We first measured twelve immune markers to obtain a thorough identification of innate and adaptive components of immunity and assessed, from the same individuals, the age-dependent variation observed in parasitic infections. Although the level of innate traits was maintained at old age, the functional innate immune traits declined with increasing age in one of two populations. In both populations, the production of inflammatory markers increased with advancing age. Finally, the adaptive response declined in late adulthood. The increasing parasite burden with age we reported suggests the effective existence of immunosenescence. Age-specific patterns differed between populations but not between sexes, which indicate that habitat quality could shape age-dependent immune phenotype in the wild.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.