A concerted effort to tackle the global health problem posed by traumatic brain injury (TBI) is long overdue. TBI is a public health challenge of vast, but insufficiently recognised, proportions. Worldwide, more than 50 million people have a TBI each year, and it is estimated that about half the world's population will have one or more TBIs over their lifetime. TBI is the leading cause of mortality in young adults and a major cause of death and disability across all ages in all countries, with a disproportionate burden of disability and death occurring in low-income and middle-income countries (LMICs). It has been estimated that TBI costs the global economy approximately $US400 billion annually. Deficiencies in prevention, care, and research urgently need to be addressed to reduce the huge burden and societal costs of TBI. This Commission highlights priorities and provides expert recommendations for all stakeholders—policy makers, funders, health-care professionals, researchers, and patient representatives—on clinical and research strategies to reduce this growing public health problem and improve the lives of people with TBI.Additional co-authors: Endre Czeiter, Marek Czosnyka, Ramon Diaz-Arrastia, Jens P Dreier, Ann-Christine Duhaime, Ari Ercole, Thomas A van Essen, Valery L Feigin, Guoyi Gao, Joseph Giacino, Laura E Gonzalez-Lara, Russell L Gruen, Deepak Gupta, Jed A Hartings, Sean Hill, Ji-yao Jiang, Naomi Ketharanathan, Erwin J O Kompanje, Linda Lanyon, Steven Laureys, Fiona Lecky, Harvey Levin, Hester F Lingsma, Marc Maegele, Marek Majdan, Geoffrey Manley, Jill Marsteller, Luciana Mascia, Charles McFadyen, Stefania Mondello, Virginia Newcombe, Aarno Palotie, Paul M Parizel, Wilco Peul, James Piercy, Suzanne Polinder, Louis Puybasset, Todd E Rasmussen, Rolf Rossaint, Peter Smielewski, Jeannette Söderberg, Simon J Stanworth, Murray B Stein, Nicole von Steinbüchel, William Stewart, Ewout W Steyerberg, Nino Stocchetti, Anneliese Synnot, Braden Te Ao, Olli Tenovuo, Alice Theadom, Dick Tibboel, Walter Videtta, Kevin K W Wang, W Huw Williams, Kristine Yaffe for the InTBIR Participants and Investigator
ROTECTING LUNGS FROM VENTIlation-induced injury is an important principle in the management of patients with acute lung injury or acute respiratory distress syndrome (ARDS). Although the critical care community has generally endorsed lower tidal volumes and inspiratory pressures, the optimal level of positive end-expiratory pressure (PEEP) remains unestablished. 1,2 Experimental data suggest that PEEP levels exceeding traditional values of 5 to 12 cm H 2 O can minimize cyclical alveolar collapse and corresponding shearing injury to the lungs in patients with considerable edema and alveolar collapse. 3-5 For patients with relatively mild acute lung injury , however, potential adverse consequences of higher PEEP levels, including circulatory depression 6 or lung overdistension, 7 may outweigh the benefits. Several multicenter, randomized trials testing the incremental effect of higher levels See also p 883 and Patient Page.
ObjectiveTo compare the effects of treatments for coronavirus disease 2019 (covid-19).DesignLiving systematic review and network meta-analysis.Data sourcesUS Centers for Disease Control and Prevention COVID-19 Research Articles Downloadable Database, which includes 25 electronic databases and six additional Chinese databases to 20 July 2020.Study selectionRandomised clinical trials in which people with suspected, probable, or confirmed covid-19 were randomised to drug treatment or to standard care or placebo. Pairs of reviewers independently screened potentially eligible articles.MethodsAfter duplicate data abstraction, a bayesian random effects network meta-analysis was conducted. Risk of bias of the included studies was assessed using a modification of the Cochrane risk of bias 2.0 tool, and the certainty of the evidence using the grading of recommendations assessment, development and evaluation (GRADE) approach. For each outcome, interventions were classified in groups from the most to the least beneficial or harmful following GRADE guidance.Results23 randomised controlled trials were included in the analysis performed on 26 June 2020. The certainty of the evidence for most comparisons was very low because of risk of bias (lack of blinding) and serious imprecision. Glucocorticoids were the only intervention with evidence for a reduction in death compared with standard care (risk difference 37 fewer per 1000 patients, 95% credible interval 63 fewer to 11 fewer, moderate certainty) and mechanical ventilation (31 fewer per 1000 patients, 47 fewer to 9 fewer, moderate certainty). These estimates are based on direct evidence; network estimates for glucocorticoids compared with standard care were less precise because of network heterogeneity. Three drugs might reduce symptom duration compared with standard care: hydroxychloroquine (mean difference −4.5 days, low certainty), remdesivir (−2.6 days, moderate certainty), and lopinavir-ritonavir (−1.2 days, low certainty). Hydroxychloroquine might increase the risk of adverse events compared with the other interventions, and remdesivir probably does not substantially increase the risk of adverse effects leading to drug discontinuation. No other interventions included enough patients to meaningfully interpret adverse effects leading to drug discontinuation.ConclusionGlucocorticoids probably reduce mortality and mechanical ventilation in patients with covid-19 compared with standard care. The effectiveness of most interventions is uncertain because most of the randomised controlled trials so far have been small and have important study limitations.Systematic review registrationThis review was not registered. The protocol is included as a supplement.Readers’ noteThis article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.
Background Thrombosis and inflammation may contribute to the risk of death and complications among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation may improve outcomes in noncritically ill patients who are hospitalized with Covid-19. Methods In this open-label, adaptive, multiplatform, controlled trial, we randomly assigned patients who were hospitalized with Covid-19 and who were not critically ill (which was defined as an absence of critical care–level organ support at enrollment) to receive pragmatically defined regimens of either therapeutic-dose anticoagulation with heparin or usual-care pharmacologic thromboprophylaxis. The primary outcome was organ support–free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of −1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge. This outcome was evaluated with the use of a Bayesian statistical model for all patients and according to the baseline d -dimer level. Results The trial was stopped when prespecified criteria for the superiority of therapeutic-dose anticoagulation were met. Among 2219 patients in the final analysis, the probability that therapeutic-dose anticoagulation increased organ support–free days as compared with usual-care thromboprophylaxis was 98.6% (adjusted odds ratio, 1.27; 95% credible interval, 1.03 to 1.58). The adjusted absolute between-group difference in survival until hospital discharge without organ support favoring therapeutic-dose anticoagulation was 4.0 percentage points (95% credible interval, 0.5 to 7.2). The final probability of the superiority of therapeutic-dose anticoagulation over usual-care thromboprophylaxis was 97.3% in the high d -dimer cohort, 92.9% in the low d -dimer cohort, and 97.3% in the unknown d -dimer cohort. Major bleeding occurred in 1.9% of the patients receiving therapeutic-dose anticoagulation and in 0.9% of those receiving thromboprophylaxis. Conclusions In noncritically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin increased the probability of survival to hospital discharge with reduced use of cardiovascular or respiratory organ support as compared with usual-care thromboprophylaxis. (ATTACC, ACTIV-4a, and REMAP-CAP ClinicalTrials.gov numbers, NCT04372589 , NCT04505774 , NCT04359277 , and NCT02735707 .)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.