Myeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumor bed during tumor growth. They contribute to the immune tolerance of cancer notably by inhibiting the function of CD8 (+) T cells. Thus, their elimination may hamper tumor growth by enhancing antitumor T-cell functions. We have previously reported that some anticancer agents relied on T cell-dependent anticancer responses to achieve maximal efficacy. However, the effect of anticancer agents on MDSC has remained largely unexplored. In this study, we observed that gemcitabine and 5-fluorouracil (5FU) were selectively cytotoxic on MDSC. In vivo, the treatment of tumor-bearing mice with 5FU led to a major decrease in the number of MDSC in the spleens and tumor beds of animals whereas no significant effect on T cells, natural killer cells, dendritic cells, or B cells was noted. Interestingly, 5FU showed a stronger efficacy over gemcitabine to deplete MDSC and selectively induced MDSC apoptotic cell death in vitro and in vivo. The elimination of MDSC by 5FU increased IFN-γ production by tumor-specific CD8(+) T cells infiltrating the tumor and promoted T cell-dependent antitumor responses in vivo. Altogether, these findings suggest that the antitumor effect of 5FU is mediated, at least in part, by its selective cytotoxic action on MDSC. Cancer Res; 70(8); 3052-61. ©2010 AACR.
CD4+CD25+ regulatory T cells are involved in the prevention of autoimmune diseases and in tumor-induced tolerance. We previously demonstrated in tumor-bearing rodents that one injection of cyclophosphamide could significantly decrease both numbers and suppressive functions of regulatory T cells, facilitating vaccine-induced tumor rejection. In humans, iterative low dosing of cyclophosphamide, referred to as "metronomic" therapy, has recently been used in patients with advanced chemotherapy resistant cancers with the aim of reducing tumor angiogenesis. Here we show that oral administration of metronomic cyclophosphamide in advanced cancer patients induces a profound and selective reduction of circulating regulatory T cells, associated with a suppression of their inhibitory functions on conventional T cells and NK cells leading to a restoration of peripheral T cell proliferation and innate killing activities. Therefore, metronomic regimen of cyclophosphamide does not only affect tumor angiogenesis but also strongly curtails immunosuppressive regulatory T cells, favoring a better control of tumor progression. Altogether these data support cyclophosphamide regimen as a valuable treatment for reducing tumor-induced immune tolerance before setting to work anticancer immunotherapy.
Myeloid-derived suppressor cells (MDSCs) have been identified in humans and mice as a population of immature myeloid cells with the ability to suppress T cell activation. They accumulate in tumor-bearing mice and humans and have been shown to contribute to cancer development. Here, we have isolated tumor-derived exosomes (TDEs) from mouse cell lines and shown that an interaction between TDE-associated Hsp72 and MDSCs determines the suppressive activity of the MDSCs via activation of Stat3. In addition, tumor-derived soluble factors triggered MDSC expansion via activation of Erk. TDE-associated Hsp72 triggered Stat3 activation in MDSCs in a TLR2/MyD88-dependent manner through autocrine production of IL-6. Importantly, decreasing exosome production using dimethyl amiloride enhanced the in vivo antitumor efficacy of the chemotherapeutic drug cyclophosphamide in 3 different mouse tumor models. We also demonstrated that this mechanism is relevant in cancer patients, as TDEs from a human tumor cell line activated human MDSCs and triggered their suppressive function in an Hsp72/TLR2-dependent manner. Further, MDSCs from cancer patients treated with amiloride, a drug used to treat high blood pressure that also inhibits exosome formation, exhibited reduced suppressor functions. Collectively, our findings show in both mice and humans that Hsp72 expressed at the surface of TDEs restrains tumor immune surveillance by promoting MDSC suppressive functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.