SummarySexual reproduction is almost universal in eukaryotic life and involves the fusion of male and female haploid gametes into a diploid cell. The sperm-restricted single-pass transmembrane protein HAP2-GCS1 has been postulated to function in membrane merger. Its presence in the major eukaryotic taxa—animals, plants, and protists (including important human pathogens like Plasmodium)—suggests that many eukaryotic organisms share a common gamete fusion mechanism. Here, we report combined bioinformatic, biochemical, mutational, and X-ray crystallographic studies on the unicellular alga Chlamydomonas reinhardtii HAP2 that reveal homology to class II viral membrane fusion proteins. We further show that targeting the segment corresponding to the fusion loop by mutagenesis or by antibodies blocks gamete fusion. These results demonstrate that HAP2 is the gamete fusogen and suggest a mechanism of action akin to viral fusion, indicating a way to block Plasmodium transmission and highlighting the impact of virus-cell genetic exchanges on the evolution of eukaryotic life.
We have investigated the molecular basis of biological differences observed among cell line-adapted isolates of the human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and the simian immunodeficiency virus (SIV) in response to receptor binding by using a soluble form of CD4 (sCD4) as a receptor mimic. We find that sCD4 binds to the envelope glycoproteins of all of the HIV-1 isolates tested with affinities within a threefold range, whereas those of the HIV-2 and SIV isolates have relative affinities for sCD4 two- to eightfold lower than those of HIV-1. Treatment of infected cells with sCD4 induced the dissociation of gp120 from gp41 and increased the exposure of a cryptic gp41 epitope on all of the HIV-1 isolates. By contrast, neither dissociation of the outer envelope glycoprotein nor increased exposure of the transmembrane glycoprotein was observed when sCD4 bound to HIV-2- or SIV-infected cells. Moreover, immunoprecipitation with sCD4 resulted in the coprecipitation of the surface and transmembrane glycoproteins from virions of the HIV-2 and SIV isolates, whereas the surface envelope glycoprotein alone was precipitated from HIV-1. However, treatment of HIV-1-, HIV-2-, and SIV-infected cells with sCD4 did result in an increase in exposure of their V2 and V3 loops, as detected by enhanced antibody reactivity. This demonstrates that receptor binding to the outer envelope glycoprotein induces certain conformational changes which are common to all of these viruses and others which are restricted to cell line-passaged isolates of HIV-1.
We have analyzed a panel of eight murine monoclonal antibodies (MAbs) that depend on the V2 domain for binding to human immunodeficiency virus type 1 (HlV-1) gpl20. Each MAb is sensitive to amino acid changes within V2, and some are affected by substitutions elsewhere. With one exception, the MAbs were not reactive with peptides from the V2 region, or only poorly so. Hence their ability to bind recombinant strain IIIB gpl20 depended on the preservation of native structure. Three MAbs cross-reacted with strain RF gpl20, but only one cross-reacted with MN gpl20, and none bound SF-2 gp120. Four MAbs neutralized HIV-1 IIIB with various potencies, and the one able to bind MN gpl20 neutralized that virus. Peptide serology indicated that antibodies cross-reactive with the HxB2 Vi and V2 regions are rarely present in HIV-1-positive sera, but the relatively conserved segment between the Vi and V2 loops was recognized by antibodies in a significant fraction of sera. Antibodies able to block the binding of V2 MAbs to IIIB or MN gpl20 rarely exist in sera from HIV-1-infected humans; more common in these sera are antibodies that enhance the binding of V2 MAbs to gpl20. This enhancement effect of HIV-1-positive sera can be mimicked by several human MAbs to different discontinuous gpl20 epitopes. Soluble CD4 enhanced binding of one V2 MAb to oligomeric gpl20 but not to monomeric gpl20, perhaps by inducing conformational changes in the oligomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.