Seismic hazard assessment is a critical but challenging issue for modern societies. A key parameter to be estimated is the recurrence interval of damaging earthquakes. This requires the establishment of earthquake records long enough to be relevant, i.e., far longer than historical observations. We study how lake sediments can be used for this purpose and explore conditions that enable lake sediments to record earthquakes. This was achieved (i) through the compilation of eight lake-sediment sequences from the European Alps to reconstruct chronicles of mass movement deposits and (ii) through the comparison of these chronicles with the well-documented earthquake history. This allowed 24 occurrences of mass movements to be identified, of which 21 were most probably triggered by an earthquake. However, the number of earthquake-induced deposits varies between lakes of a same region, suggesting variable thresholds of the lake sequences to record earthquake shaking. These thresholds have been quantified by linking the mass movement occurrences in a single lake to both intensity and distance of the triggering earthquakes. This method offers a quantitative approach to estimate locations and intensities of past earthquake epicenters. Finally, we explored which lake characteristics could explain the various sensitivities. Our results suggest that sedimentation rate should be larger than 0.5 mm yr À1 so that a given lake records earthquakes in moderately active seismotectonic regions. We also postulate that an increasing sedimentation rate may imply an increasing sensitivity to earthquake shaking. Hence, further paleoseismological studies should control carefully that no significant change in sedimentation rates occurs within a record, which could falsify the assessment of earthquake recurrence intervals.
11We characterise the aftershock sequence following the 2016 Mw=7.8 Pedernales earthquake. 12More than 10,000 events were detected and located, with magnitudes up to 6.9. Most of the 13 aftershock seismicity results from interplate thrust faulting, but we also observe a few normal 14 and strike-slip mechanisms. Seismicity extends for more than 300 km along strike, and is 15 constrained between the trench and the maximum depth of the coseismic rupture. The most 16 striking feature is the presence of three seismicity bands, perpendicular to the trench, which 17 are also observed during the interseismic period. Additionally, we observe a linear 18 dependency between the temporal evolution of afterslip and aftershocks. We also find a 19 temporal semi-logarithmic expansion of aftershock seismicity along strike and dip directions, 20 further indicating that their occurrence is modulated by afterslip. Lastly, we observe that the 21 spatial distribution of seismic and aseismic slip processes is correlated to the distribution of 22 bathymetric anomalies associated with the northern flank of the Carnegie Ridge, suggesting 23 that slip in the area could be influenced by the relief of the subducting seafloor. To explain 24 our observations, we propose a conceptual model in which the Ecuadorian margin is subject 25 to a bimodal slip mode, with distributed seismic and aseismic slip mechanically controlled by 26 the subduction of a rough oceanic relief. Our study sheds new light on the mechanics of 27 subduction, relevant for convergent margins with a complex and heterogeneous structure 28 such as the Ecuadorian margin. 29
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.