Although the effects of high-frequency electromagnetic fields on biological systems have been studied frequently, unequivocal results have rarely been obtained, primarily because suitably controlled experiments could not be performed. In the present work, tomato plants were exposed to a homogeneous and isotropic field (900 MHz) using a mode stirred reverberation chamber, and the stress-related transcripts (calmodulin, protease inhibitor and chloroplast mRNA-binding protein) were assayed by real-time quantitative PCR. Exposure to an electromagnetic field induced a biphasic response, in which the levels of all three transcripts increased four-to six-fold 15 min after the end of electromagnetic stimulation, dropped to close to initial levels by 30 min, and then increased again at 60 min. We deliberately focused on the very early molecular responses to high-frequency electromagnetic fields in order to minimize secondary effects.
Using an especially-designed facility, the Mode Stirred Reverberation Chamber, we exposed tomato plants (Lycopersicon esculentum Mill. VFN8) to low level (900 MHz, 5 V m(-1)) electromagnetic fields for a short period (10 min) and measured changes in abundance of three specific mRNA soon after exposure. Within minutes of electromagnetic stimulation, stress-related mRNA (calmodulin, calcium-dependent protein kinase and proteinase inhibitor) accumulated in a rapid, large and 3-phase manner typical of an environmental stress response. Accumulation of these transcripts into the polysomal RNA also took place (indicating that the encoded proteins were translated) but was delayed (indicating that newly-synthesized mRNA was not immediately recruited into polysomes). Transcript accumulation was maximal at normal Ca(2+) levels and was depressed at higher Ca(2+), especially for those encoding calcium-binding proteins. Removal of Ca(2+) (by addition of chelating agents or Ca(2+) channel blocker) led to total suppression of mRNA accumulation. Finally, 30 min after the electromagnetic treatment, ATP concentration and adenylate energy charge were transiently decreased, while transcript accumulation was totally prevented by application of the uncoupling reagent, CCCP. These responses occur very soon after exposure, strongly suggesting that they are the direct consequence of application of radio-frequency fields and their similarities to wound responses strongly suggests that this radiation is perceived by plants as an injurious stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.