Background and purposeA substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified.MethodsA detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty.ResultsVery few components (e.g., source strength and afterloader timer) are independent of clinical disease site and location of administered dose. While the influence of medium on dose calculation can be substantial for low energy sources or non-deeply seated implants, the influence of medium is of minor importance for high-energy sources in the pelvic region. The level of uncertainties due to target, organ, applicator, and/or source movement in relation to the geometry assumed for treatment planning is highly dependent on fractionation and the level of image guided adaptive treatment. Most studies to date report the results in a manner that allows no direct reproduction and further comparison with other studies. Often, no distinction is made between variations, uncertainties, and errors or mistakes. The literature review facilitated the drafting of recommendations for uniform uncertainty reporting in clinical BT, which are also provided. The recommended comprehensive uncertainty investigations are key to obtain a general impression of uncertainties, and may help to identify elements of the brachytherapy treatment process that need improvement in terms of diminishing their dosimetric uncertainties. It is recommended to present data on the analyzed parameters (distance shifts, volume changes, source or applicator position, etc.), and also their influence on absorbed dose for clinically-relevant dose parameters (e.g., target parameters such as D90 or OAR doses). Publications on brachytherapy should include a statement of total dose uncertainty for the entire treatment course, taking into account the fractionation schedule and level of image guidance for adaptation.ConclusionsThis report on brachytherapy clinical uncertainties represents a working project developed by the Brachytherapy Physics Quality Assurances System (BRAPHYQS) subcommittee to the Physics Committee within GEC-ESTRO. Further, this report has been reviewed and approved by the American Association of Physicists in Medicine.
HDRBT in prostate cancer can be practiced effectively and safely within the context of these guidelines with the main indication being for dose escalation with external beam. HDRBT used alone is currently under evaluation and its role in focal treatment and recurrence will be areas of future development.
The Head and Neck Working Group of the GEC-ESTRO (Groupe Européen de Curiethérapie - European Society for Therapeutic Radiology and Oncology) published in 2009 the consensus recommendations for low-dose rate, pulsed-dose rate and high-dose rate brachytherapy in head & neck cancers. The use of brachytherapy in combination with external beam radiotherapy and/or surgery was also covered as well as the use of brachytherapy in previously irradiated patients. Given the developments in the field, these recommendations needed to be updated to reflect up-to-date knowledge. The present update does not repeat basic knowledge which was published in the first recommendation but covers in a general part developments in (1) dose and fractionation, (2) aspects of treatment selection for brachytherapy alone versus combined BT+EBRT and (3) quality assurance issues. Detailed expert committee opinion intends to help the clinical practice in lip-, oral cavity-, oropharynx-, nasopharynx-, and superficial cancers. Different aspects of adjuvant treatment techniques and their results are discussed, as well the possibilities of salvage brachytherapy applications.
The development of a radiation induced second primary cancer (SPC) is one the most serious long term consequences of successful cancer treatment. This review aims to evaluate SPC in prostate cancer (PCa) patients treated with radiotherapy, and assess whether radiation technique influences SPC. A systematic review of the literature was performed to identify studies examining SPC in irradiated PCa patients. This identified 19 registry publications, 21 institutional series and 7 other studies. There is marked heterogeneity in published studies. An increased risk of radiation-induced SPC has been identified in several studies, particularly those with longer durations of follow-up. The risk of radiation-induced SPC appears small, in the range of 1 in 220 to 1 in 290 over all durations of follow-up, and may increase to 1 in 70 for patients followed up for more than 10 years, based on studies which include patients treated with older radiation techniques (i.e. non-conformal, large field). To date there are insufficient clinical data to draw firm conclusions about the impact of more modern techniques such as IMRT and brachytherapy on SPC risk, although limited evidence is encouraging. In conclusion, despite heterogeneity between studies, an increased risk of SPC following radiation for PCa has been identified in several studies, and this risk appears to increase over time. This must be borne in mind when considering which patients to irradiate and which techniques to employ.
A hypothetical, generic HDR (192)Ir source was designed and implemented in two commercially available TPSs employing different MBDCAs. Reference dose distributions for this source were benchmarked and used for the evaluation of MBDCA calculations employing a virtual, cubic water phantom in the form of a CT DICOM image series. The implementation of a generic source of identical design in all TPSs using MBDCAs is an important step toward supporting univocal commissioning procedures and direct comparisons between TPSs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.