PM 2.5 , mass concentration of particles less than 2.5 mm in size; PM 2.5 absorbance, measurement of the blackness of PM 2.5 filters, this is a proxy for elemental carbon, which is the dominant light absorbing substance; PM 10 , mass concentration of particles less than 10 mm in size; PM coarse , mass concentration of the coarse fraction of particles between 2.5 mm and 10 mm in size; RB, regional background; RH, relative humidity; ST, Street; TRAPCA, Traffic-Related Air Pollution and Childhood Asthma; UB, urban background; US EPA, United States Environmental Protection Agency.
There is moderate-quality evidence that digital interventions may lower alcohol consumption, with an average reduction of up to three (UK) standard drinks per week compared to control participants. Substantial heterogeneity and risk of performance and publication bias may mean the reduction was lower. Low-quality evidence from fewer studies suggested there may be little or no difference in impact on alcohol consumption between digital and face-to-face interventions.The BCTs of behaviour substitution, problem solving and credible source were associated with the effectiveness of digital interventions to reduce alcohol consumption and warrant further investigation in an experimental context.Reporting of theory use was very limited and often unclear when present. Over half of the interventions made no reference to any theories. Limited reporting of theory use was unrelated to heterogeneity in intervention effectiveness.
PM 2.5 : mass concentration of particles less than 2.5 µm in size PM 10 : mass concentration of particles less than 10 µm in size RB: Regional Background site SOP: Standard Operating Procedure ST: Street site TRAPCA: Traffic-Related Air Pollution and Childhood Asthma UB: Urban Background site ABSTRACT The ESCAPE study (European Study of Cohorts for Air Pollution Effects) investigates long-term effects on human health of exposure to air pollution in Europe. Various health endpoints are analysed by using prospective cohort studies in the study areas. This paper documents the spatial variation of measured NO 2 and NO x concentrations between and within 36 study areas across Europe. In 36 study areas NO 2 and NO x were measured using standardized methods between October 2008 and April 2011. In each study area 14 to 80 sites were selected, which represented a wide range of regional, urban and nearby traffic related pollution contrast. The measurements were conducted for two weeks per site in three different seasons, using Ogawa badges. Results for each site were adjusted for temporal variation using data obtained from a routine monitor background site, which operated continuously, and averaged. Substantial spatial variability was found in NO 2 and NO x concentrations between and within study areas. Analysis of variance showed that 40% of the overall NO 2 variance is attributable to the variability between the study areas and 60% is caused by the variability within the study areas. The corresponding values for NO x are 30% (between the study areas) and 70% (within the study areas). The within-area spatial variability was mostly determined by the differences between traffic and urban background concentrations. The traffic/urban background concentration ratio varied between 1.09 and 3.16 across Europe. The NO 2 / NO x ratio varied between 0.47 (Verona) and 0.72 (Heraklion) across study areas. In study areas in southern Europe the highest median concentrations were observed (Barcelona: NO 2 55 µg/m³), followed by densely populated areas in Western Europe (Ruhr area, The Netherlands). The lowest concentrations were observed in all areas in Northern Europe (e.g. Umeå: NO 2 7 µg/m³). In conclusion, we found significant contrast in annual average NO 2 and NO x concentration between and especially within 36 study areas across Europe. Epidemiological studies should therefore characterize intra-urban contrasts. The use of traffic indicators such as "living close to major road" as an exposure variable in epidemiological studies results in different actual NO 2 contrasts. We would like to thank Kees Meliefste, Geert de Vrieze, Marjan Tewis (IRAS, Utrecht University, The Netherlands) for the sampler preparation, analysis and data management. Furthermore, we thank all those who were responsible for air pollution measurements, data management and project supervision in all study areas and especially:
Background: Few studies have investigated traffic-related air pollution as a risk factor for respiratory infections during early childhood.Objectives: We aimed to investigate the association between air pollution and pneumonia, croup, and otitis media in 10 European birth cohorts—BAMSE (Sweden), GASPII (Italy), GINIplus and LISAplus (Germany), MAAS (United Kingdom), PIAMA (the Netherlands), and four INMA cohorts (Spain)—and to derive combined effect estimates using meta-analysis.Methods: Parent report of physician-diagnosed pneumonia, otitis media, and croup during early childhood were assessed in relation to annual average pollutant levels [nitrogen dioxide (NO2), nitrogen oxide (NOx), particulate matter ≤ 2.5 μm (PM2.5), PM2.5 absorbance, PM10, PM2.5–10 (coarse PM)], which were estimated using land use regression models and assigned to children based on their residential address at birth. Identical protocols were used to develop regression models for each study area as part of the ESCAPE project. Logistic regression was used to calculate adjusted effect estimates for each study, and random-effects meta-analysis was used to calculate combined estimates.Results: For pneumonia, combined adjusted odds ratios (ORs) were elevated and statistically significant for all pollutants except PM2.5 (e.g., OR = 1.30; 95% CI: 1.02, 1.65 per 10-μg/m3 increase in NO2 and OR = 1.76; 95% CI: 1.00, 3.09 per 10-μg/m3 PM10). For otitis media and croup, results were generally null across all analyses except for NO2 and otitis media (OR = 1.09; 95% CI: 1.02, 1.16 per 10-μg/m3).Conclusion: Our meta-analysis of 10 European birth cohorts within the ESCAPE project found consistent evidence for an association between air pollution and pneumonia in early childhood, and some evidence for an association with otitis media.Citation: MacIntyre EA, Gehring U, Mölter A, Fuertes E, Klümper C, Krämer U, Quass U, Hoffmann B, Gascon M, Brunekreef B, Koppelman GH, Beelen R, Hoek G, Birk M, de Jongste JC, Smit HA, Cyrys J, Gruzieva O, Korek M, Bergström A, Agius RM, de Vocht F, Simpson A, Porta D, Forastiere F, Badaloni C, Cesaroni G, Esplugues A, Fernández-Somoano A, Lerxundi A, Sunyer J, Cirach M, Nieuwenhuijsen MJ, Pershagen G, Heinrich J. 2014. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE project. Environ Health Perspect 122:107–113; http://dx.doi.org/10.1289/ehp.1306755
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.