Both oxidative tissue damage and polymorphonuclear leukocytes indicating an oxidative potential occur in the tear film of patients suffering from dry eyes. These reactions lead to severe damage of the involved tissue. Free radicals and inflammation may be involved in the pathogenesis or in the self-propagation of the disease.
Purpose: To evaluate epiretinal membranes in proliferative eye disease for the presence of vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF-α). Methods: Membranes were surgically removed from 66 patients with proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR) and macular pucker (MP). Cytokine concentrations were determined by ELISA (VEGF) and bioassay (TNF-α). Results: VEGF was detected in all 66 membranes investigated. The highest VEGF values were found in patients with type I diabetes (mean = 5,994 pg/mg protein). In patients with type II diabetes, the values were at a mean of 1,242 pg/mg protein. When coagulation therapy was performed for longer than 3 months prior to surgery, VEGF was significantly (p < 0.05) reduced. Intermediate levels of VEGF were found in PVR membranes (mean = 1,417 pg/mg protein). The lowest activity was found in MP (mean = 216 pg/mg protein). In contrast, TNF-α was present in 16 PDR membranes, 9 PVR membranes and 8 MP membranes. Conclusion: The presence of VEGF in all membranes investigated indicates that this cytokine plays an important role in angiogenesis in ischemic retinal disease and in membrane growth in proliferative disorders.
BackgroundThere is absence of specific biomarkers and an incomplete understanding of the pathophysiology of exudative age-related macular degeneration (AMD).Methods and FindingsEighty-eight vitreous samples (73 from patients with treatment naïve AMD and 15 control samples from patients with idiopathic floaters) were analyzed with capillary electrophoresis coupled to mass spectrometry in this retrospective case series to define potential candidate protein markers of AMD. Nineteen proteins were found to be upregulated in vitreous of AMD patients. Most of the proteins were plasma derived and involved in biological (ion) transport, acute phase inflammatory reaction, and blood coagulation. A number of proteins have not been previously associated to AMD including alpha-1-antitrypsin, fibrinogen alpha chain and prostaglandin H2-D isomerase. Alpha-1-antitrypsin was validated in vitreous of an independent set of AMD patients using Western blot analysis. Further systems biology analysis of the data indicated that the observed proteomic changes may reflect upregulation of immune response and complement activity.ConclusionsProteome analysis of vitreous samples from patients with AMD, which underwent an intravitreal combination therapy including a core vitrectomy, steroids and bevacizumab, revealed apparent AMD-specific proteomic changes. The identified AMD-associated proteins provide some insight into the pathophysiological changes associated with AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.