The mammalian olfactory system detects an unlimited variety of odorants with a limited set of odorant receptors. To cope with the complexity of the odor world, each odorant receptor must detect many different odorants. The demand for low odor selectivity creates problems for the transduction process: the initial transduction step, the synthesis of the second messenger cAMP, operates with low efficiency, mainly because odorants bind only briefly to their receptors. Sensory cilia of olfactory receptor neurons have developed an unusual solution to this problem. They accumulate chloride ions at rest and discharge a chloride current upon odor detection. This chloride current amplifies the receptor potential and promotes electrical excitation. We have studied this amplification process by examining identity, subcellular localization, and regulation of its molecular components. We found that the Na + /K + /2Cl − cotransporter NKCC1 is expressed in the ciliary membrane, where it mediates chloride accumulation into the ciliary lumen. Gene silencing experiments revealed that the activity of this transporter depends on the kinases SPAK and OSR1, which are enriched in the cilia together with their own activating kinases, WNK1 and WNK4. A second Cl − transporter, the Cl − /HCO 3 − exchanger SLC4A1, is expressed in the cilia and may support Cl − accumulation. The calcium-dependent chloride channel TMEM16B (ANO2) provides a ciliary pathway for the excitatory chloride current. These findings describe a specific set of ciliary proteins involved in anion-based signal amplification. They provide a molecular concept for the unique strategy that allows olfactory sensory neurons to operate as efficient transducers of weak sensory stimuli.chloride | olfaction | sensory transduction | transport | kinase M ammalian olfactory receptor neurons (ORNs) present to the air a tuft of sensory cilia equipped with odorant receptors. Upon contact with odorants, these receptors actuate a transduction cascade that leads to firing of action potentials. This cascade has an unusual, two-stage organization (1). First, the activated odorant receptors induce a rise of the second messengers cAMP and Ca 2+ in the cilia, a process that involves cAMP-gated, Ca 2+ -permeable ion channels. In the second stage, inflowing Ca 2+ opens Cl − channels. By conducting a depolarizing Cl − efflux from the cilia, these channels amplify the receptor potential approximately 10-fold, thus helping to excite the neuron even when stimulation is weak. ORNs accumulate chloride through the Na + /K + /2Cl − cotransporter NKCC1 and maintain an elevated intracellular Cl − concentration (2, 3) to support amplification. Accordingly, gene ablation of NKCC1, as well as the pharmacologic suppression of Cl − accumulation or Cl − efflux, strongly inhibits the sensory response of ORNs (3-5). Although these observations provide a robust concept for signal amplification, several points are still unclear. These concern both the Cl − accumulation process and the excitatory Cl − currents. First, ...
Olfactory sensory neurons expose to the inhaled air chemosensory cilia which bind odorants and operate as transduction organelles. Odorant receptors in the ciliary membrane activate a transduction cascade which uses cAMP and Ca(2+) for sensory signaling in the ciliary lumen. Although the canonical transduction pathway is well established, molecular components for more complex aspects of sensory transduction, like adaptation, regulation, and termination of the receptor response have not been systematically identified. Moreover, open questions in olfactory physiology include how the cilia exchange solutes with the surrounding mucus, assemble their highly polarized set of proteins, and cope with noxious substances in the ambient air. A specific ciliary proteome would promote research efforts in all of these fields. We have improved a method to detach cilia from rat olfactory sensory neurons and have isolated a preparation specifically enriched in ciliary membrane proteins. Using LC-ESI-MS/MS analysis, we identified 377 proteins which constitute the olfactory cilia proteome. These proteins represent a comprehensive data set for olfactory research since more than 80% can be attributed to the characteristic functions of olfactory sensory neurons and their cilia: signal processing, protein targeting, neurogenesis, solute transport, and cytoprotection. Organellar proteomics thus yielded decisive information about the diverse physiological functions of a sensory organelle.
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.
Background: Chloride currents in peripheral nociceptive neurons have been implicated in the generation of afferent nociceptive signals, as Cl -accumulation in sensory endings establishes the driving force for depolarizing, and even excitatory, Cl -currents. The intracellular Cl -concentration can, however, vary considerably between individual DRG neurons. This raises the question, whether the contribution of Cl -currents to signal generation differs between individual afferent neurons, and whether the specific Cl -levels in these neurons are subject to modulation. Based on the hypothesis that modulation of the peripheral Cl -homeostasis is involved in the generation of inflammatory hyperalgesia, we examined the effects of inflammatory mediators on intracellular Clconcentrations and on the expression levels of Cl -transporters in rat DRG neurons.
The cilia of mammalian olfactory receptor neurons (ORNs) represent the sensory interface that is exposed to the air within the nasal cavity. The cilia are the site where odorants bind to specific receptors and initiate olfactory transduction that leads to excitation of the neuron. This process involves a multitude of ciliary proteins that mediate chemoelectrical transduction, amplification, and adaptation of the primary sensory signal. Many of these proteins were initially identified by their enzymatic activities using a membrane protein preparation from olfactory cilia. This so-called "calcium-shock" preparation is a versatile tool for the exploration of protein expression, enzyme kinetics, regulatory mechanisms, and ciliary development. To support such studies, we present a first proteomic analysis of this membrane preparation. We subjected the cilia preparation to liquid chromatography-electrospray ionisation (LC-ESI-MS/MS) tandem mass spectrometry and identified 268 proteins, of which 49% are membrane proteins. A detailed analysis of their cellular and subcellular localization showed that the cilia preparation obtained by calcium shock not only is highly enriched in ORN proteins but also contains a significant amount of nonciliary material. Although our proteomic study does not identify the entire set of ciliary and nonciliary proteins, it provides the first estimate of the purity of the calcium-shock preparation and provides valuable biochemical information for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.