SUPPLEMENTARY INFORMATION Typical measurement sequenceThe nucleation rates (J cm −3 s −1 ) are measured under neutral (J n ), galactic cosmic ray (J gcr ) or charged pion beam (J ch ) conditions. For J gcr a beam stopper blocks the pions and the chamber is irradiated by GCRs together with a small parasitic component of penetrating beam muons, whereas, for J ch , the beam stopper is opened and the pion beam is normally set to a time-averaged rate of (5 − 6) · 10 4 s −1 . Neutral nucleation rates are measured
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei 1 . Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes 2 . Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases 2 . However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere 3 . It is thought that amines may enhance nucleation 4-16 , but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.The primary vapour responsible for atmospheric nucleation is thought to be sulphuric acid (H 2 SO 4 ), derived from the oxidation of sulphur dioxide. However, peak daytime H 2 SO 4 concentrations in the atmospheric boundary layer are about 10 6 to 3 3 10 7 cm 23 (0.04-1.2 parts per trillion by volume (p.p.t.v.)), which results in negligible binary homogeneous nucleation of H 2 SO 4 -H 2 O (ref. 3). Additional species such as ammonia or amines 4,5 are therefore necessary to stabilize the embryonic clusters and decrease evaporation. However, ammonia cannot account for particle formation rates observed in the boundary layer 3 and, despite numerous field and laboratory studies [6][7][8][9][10][11][12][13][14][15][16] , amine ternary nucleation has not yet been observed under atmospheric conditions. Amine emissions are dominated by anthropogenic activities (mainly animal husbandry), but about 30% of emissions are thought to arise from the breakdown of organic matter in the oceans, and 20% from biomass burning and soil 8,17 . Atmospheric measurements of gasphase amines ...
Nucleation is a fundamental step in atmospheric new-particle formation. However, laboratory experiments on nucleation have systematically failed to demonstrate sulfuric acid particle formation rates as high as those necessary to account for ambient atmospheric concentrations, and the role of sulfuric acid in atmospheric nucleation has remained a mystery. Here, we report measurements of new particles (with diameters of approximately 1.5 nanometers) observed immediately after their formation at atmospherically relevant sulfuric acid concentrations. Furthermore, we show that correlations between measured nucleation rates and sulfuric acid concentrations suggest that freshly formed particles contain one to two sulfuric acid molecules, a number consistent with assumptions that are based on atmospheric observations. Incorporation of these findings into global models should improve the understanding of the impact of secondary particle formation on climate.
Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood 1 . Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours 2 . It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere 3,4 , and that ions have a relatively minor role 5 . Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded 6,7 . Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.It is thought that aerosol particles rarely form in the atmosphere without sulfuric acid 3,4 , except in certain coastal regions where iodine oxides are involved 8 . Furthermore, ions are thought to be relatively unimportant in the continental boundary layer, accounting for only around 10% of particle formation 5 . Sulfuric acid derives from anthropogenic and volcanic sulfur dioxide emissions as well as dimethyl sulfide from marine biota. However, typical daytime sulfuric acid concentrations (10 5 -10 7 cm −3, or 0.004-0.4 parts per trillion by volume (p.p.t.v.) at standard conditions) are too low for sulfuric acid and water alone to account for the particle formation rates observed in the lower atmosphere 9 , so additional vapours are required to stabilize any embryonic sulfuric acid clusters against evaporation. Base species such as amines can do this and can explain part of atmospheric particle nucleation 10 . It is well established that oxidation products of volatile organic compounds (VOCs) are important for particle growth 11, but whether their role in the smallest particles is in nucleation or growth alone has remained ambiguous 4,12,13 . Recently, however, it has been shown that oxidized organic compounds do indeed help to stabilize sulfuric acid clusters and probably play a major role in atmospheric particle nucleation 6,14,15 . We refer to these compounds as HOMs (highly oxygenated molecules) rather than ELVOCs (extremely low-volatility organic compounds) 16 because the measured compounds span a wide range of low volatilities.Here we report atmospheric particle formation solely from biogenic vapours. The data were obtained at the CERN CLOUD chamber (Cosmics Leaving OUtdoor Droplets; see Methods for experimental details) betw...
Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O 3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.autoxidation | ELVOC | monoterpenes | isoprene | new particle formation F ormation and subsequent growth of new aerosol particles is a major source of cloud condensation nuclei (CCN) in the global troposphere (1, 2), and a big contributor to the large reported uncertainty in the radiative forcing by aerosol−cloud interactions (3-7). Multiple field studies have shown that CCN production is tightly connected with the oxidation of biogenic volatile organic compounds (BVOC) emitted by terrestrial ecosystems (8-11). To explain these observations, large-scale model simulations demonstrate a need for a BVOC oxidation mechanism in the atmosphere that produces very low volatility organic vapors with molar formation yields of at least a few percent per reacted precursor compound (12)(13)(14).The existence and formation mechanisms of essentially nonvolatile organic vapors in the atmosphere have puzzled scientists for some time (14-16). Such extremely low volatile organic compounds (ELVOC) (17) were recently detected, both in laboratory studies and in the ambient atmosphere (18), yet typical atmospheric oxidation chemistry schemes do not explain ELVOC produced on a time scale of minutes or hours. Furthermore, current state-of-the-art models using available chemistry schemes have systematically failed to reproduce the observed concentrations and volatility of organic aerosol components (17, 19). A plausible exp...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.