The spread of HIV between immune cells is greatly enhanced by cell-cell adhesions called virological synapses, although the underlying mechanisms have been unclear. With use of an infectious, fluorescent clone of HIV, we tracked the movement of Gag in live CD4 T cells and captured the direct translocation of HIV across the virological synapse. Quantitative, high-speed three-dimensional (3D) video microscopy revealed the rapid formation of micrometer-sized “buttons” containing oligomerized viral Gag protein. Electron microscopy showed that these buttons were packed with budding viral crescents. Viral transfer events were observed to form virus-laden internal compartments within target cells. Continuous time-lapse monitoring showed preferential infection through synapses. Thus, HIV dissemination may be enhanced by virological synapse-mediated cell adhesion coupled to viral endocytosis.
Arginine deprivation as an anticancer therapy has historically been met with limited success. The development of pegylated arginine deiminase (ADI-PEG20) has renewed interest in arginine deprivation for the treatment of some cancers. The efficacy of ADI-PEG20 is directly correlated with argininosuccinate synthetase (ASS) deficiency. CWR22Rv1 prostate cancer cells do not express ASS, the rate-limiting enzyme in arginine synthesis, and are susceptible to ADI-PEG20 in vitro. Interestingly, apoptosis by 0.3 Mg/mL ADI-PEG20 occurs 96 hours posttreatment and is caspase independent. The effect of ADI-PEG20 in vivo reveals reduced tumor activity by micropositron emission tomography as well as reduced tumor growth as a monotherapy and in combination with docetaxel against CWR22Rv1 mouse xenografts. In addition, we show autophagy is induced by single amino acid depletion by ADI-
SUMMARY HIV-1 can infect T cells by cell-free virus or by direct virion transfer between cells through cell contact-induced structures called virological synapses (VS). During VS-mediated infection, virions accumulate within target cell endosomes. We show that after crossing the VS, the transferred virus undergoes both maturation and viral membrane fusion. Following VS transfer, viral membrane fusion occurs with delayed kinetics and transferred virions display reduced sensitivity to patient antisera compared to mature, cell-free virus. Furthermore, particle fusion requires that the transferred virions undergo proteolytic maturation within acceptor cell endosomes, which occurs over several hours. Rapid, live cell confocal microscopy demonstrated that viral fusion can occur in compartments that have moved away from the VS. Thus, HIV particle maturation activates viral fusion in target CD4+ T cell endosomes following transfer across the VS and may represent a pathway by which HIV evades antibody neutralization.
Autophagy is the principal catabolic prosurvival pathway during nutritional starvation. However, excessive autophagy could be cytotoxic, contributing to cell death, but its mechanism remains elusive. Arginine starvation has emerged as a potential therapy for several types of cancers, owing to their tumor-selective deficiency of the arginine metabolism. We demonstrated here that arginine depletion by arginine deiminase induces a cytotoxic autophagy in argininosuccinate synthetase (ASS1)-deficient prostate cancer cells. Advanced microscopic analyses of arginine-deprived dying cells revealed a novel phenotype with giant autophagosome formation, nucleus membrane rupture, and histone-associated DNA leakage encaptured by autophagosomes, which we shall refer to as chromatin autophagy, or chromatophagy. In addition, nuclear inner membrane (lamin A/C) underwent localized rearrangement and outer membrane (NUP98) partially fused with autophagosome membrane. Further analysis showed that prolonged arginine depletion impaired mitochondrial oxidative phosphorylation function and depolarized mitochondrial membrane potential. Thus, reactive oxygen species (ROS) production significantly increased in both cytosolic and mitochondrial fractions, presumably leading to DNA damage accumulation. Addition of ROS scavenger N-acetyl cysteine or knockdown of ATG5 or BECLIN1 attenuated the chromatophagy phenotype. Our data uncover an atypical autophagyrelated death pathway and suggest that mitochondrial damage is central to linking arginine starvation and chromatophagy in two distinct cellular compartments.arginine auxotrophy | ADI-PEG20 | metabolic stress | cancer therapy | prostate cancer T here is considerable evidence that tumor and normal cells differ in their metabolic requirements. The most prominent examples are the addiction of tumor cells to glucose (i.e., Warburg effect) and to glutamine (1-3). Therapeutics based on selective targeting of these metabolic pathways are under intensive investigation. Starvation therapy generally posts an advantage of having lower toxicity than conventional radiation and chemotherapy. In addition to glutamine, the differential requirement of other amino acids by tumor cells also exists and has been exploited in developing amino acid depletion therapy. The choices, however, are limited, because only 11 amino acids are considered semiessential or nonessential. Nevertheless, recent studies showed that starvation of arginine, asparagine, cysteine, leucine, and glutamine seems to provide preferential killing of tumor cells (4-9). Among them, arginine and asparagine depletion probably are the most advanced in amino acid starvation therapies and have reached clinical trials (10, 11).Argininosuccinate synthetase (ASS1), a rate-limiting enzyme for intracellular arginine synthesis, was found to have reduced expression in many cancer types including prostate cancer (4, 5, 12-18).As a result, prostate cancer cells become "auxotroph" for and addicted to external arginine. Indeed, in recent publications we showed t...
A compact clinically compatible fluorescence lifetime imaging microscopy (FLIM) system was designed and built for intraoperative disease diagnosis and validated in vivo in a hamster oral carcinogenesis model. This apparatus allows for the remote image collection via a flexible imaging probe consisting of a gradient index objective lens and a fiber bundle. Tissue autofluorescence (337 nm excitation) was imaged using an intensified CCD with a gate width down to 0.2 ns. We demonstrate a significant contrast in fluorescence lifetime between tumor (1.77±0.26 ns) and normal (2.50±0.36 ns) tissues at 450 nm and an over 80% intensity decrease at 390 nm emission in tumor versus normal areas. The time-resolved images were minimally affected by tissue morphology, endogenous absorbers, and illumination. These results demonstrate the potential of FLIM as an intraoperative diagnostic technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.