Most studies published to date consider single noise sources and the reported noise metrics are not informative about the peaking characteristics of the source under investigation. Our study focuses on the association between cardiovascular mortality in Switzerland and the three major transportation noise sources-road, railway and aircraft traffic-along with a novel noise metric termed intermittency ratio (IR), expressing the percentage contribution of individual noise events to the total noise energy from all sources above background levels. We generated Swiss-wide exposure models for road, railway and aircraft noise for 2001. Noise from the most exposed façade was linked to geocodes at the residential floor height for each of the 4.41 million adult (>30 y) Swiss National Cohort participants. For the follow-up period 2000-2008, we investigated the association between all noise exposure variables [L(Road), L(Rail), L(Air), and IR at night] and various cardiovascular primary causes of death by multipollutant Cox regression models adjusted for potential confounders including NO. The most consistent associations were seen for myocardial infarction: adjusted hazard ratios (HR) (95% CI) per 10 dB increase of exposure were 1.038 (1.019-1.058), 1.018 (1.004-1.031), and 1.026 (1.004-1.048) respectively for L(Road), L(Rail), and L(Air). In addition, total IR at night played a role: HRs for CVD were non-significant in the 1st, 2nd and 5th quintiles whereas they were 1.019 (1.002-1.037) and 1.021 (1.003-1.038) for the 3rd and 4th quintiles. Our study demonstrates the impact of all major transportation noise sources on cardiovascular diseases. Mid-range IR levels at night (i.e. between continuous and highly intermittent) are potentially more harmful than continuous noise levels of the same average level.
BackgroundEpidemiological studies have inconsistently linked transportation noise and air pollution (AP) with diabetes risk. Most studies have considered single noise sources and/or AP, but none has investigated their mutually independent contributions to diabetes risk.MethodsWe investigated 2631 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), without diabetes in 2002 and without change of residence between 2002 and 2011. Using questionnaire and biomarker data, incident diabetes cases were identified in 2011. Noise and AP exposures in 2001 were assigned to participants’ residences (annual average road, railway or aircraft noise level during day-evening-night (Lden), total night number of noise events, intermittency ratio (temporal variation as proportion of event-based noise level over total noise level) and nitrogen dioxide (NO2) levels. We applied mixed Poisson regression to estimate the relative risk (RR) of diabetes and their 95% confidence intervals (CI) in mutually-adjusted models.ResultsDiabetes incidence was 4.2%. Median [interquartile range (IQR)] road, railway, aircraft noise and NO2 were 54 (10) dB, 32 (11) dB, 30 (12) dB and 21 (15) μg/m3, respectively. Lden road and aircraft were associated with incident diabetes (respective RR: 1.35; 95% CI: 1.02–1.78 and 1.86; 95% CI: 0.96–3.59 per IQR) independently of Lden railway and NO2 (which were not associated with diabetes risk) in mutually adjusted models. We observed stronger effects of Lden road among participants reporting poor sleep quality or sleeping with open windows.ConclusionsTransportation noise may be more relevant than AP in the development of diabetes, potentially acting through noise-induced sleep disturbances.
LED *Shared senior authors. light sources have a discontinuous light spectrum with a prominent ‘blue’ peak between 450 and 470 nm that influences non-image forming responses in humans. We tested an LED lighting solution mimicking a daylight spectrum on visual comfort, circadian physiology, daytime alertness, mood, cognitive performance and sleep. Fifteen young males twice spent 49 hours in the laboratory under a conventional-LED and under a daylight-LED condition in a balanced cross over design flanked by a baseline and a post-light exposure night. Despite different light spectra, the photopic lux and the correlated colour temperature of the lighting were the same for both LEDs. The colour rendering index and the melanopic strength were 25.3% and 21%, respectively, higher for the daylight LED than the conventional LED. The volunteers had better visual comfort, felt more alert and happier in the morning and evening under daylight LED than conventional LED, while the diurnal melatonin profile, psychomotor vigilance and working memory performance were not significantly different. Delta EEG activity (0.75–4.5 Hz) was significantly higher after daylight-LED than conventional-LED exposure during the post-light exposure night. We have evidence that a daylight-LED solution has beneficial effects on visual comfort, daytime alertness, mood and sleep intensity in healthy volunteers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.