Autophagy is emerging as a crucial defense mechanism against bacteria, but the host intracellular sensors responsible for inducing autophagy in response to bacterial infection remain unknown. Here we demonstrated that the intracellular sensors Nod1 and Nod2 are critical for the autophagic response to invasive bacteria. By a mechanism independent of the adaptor RIP2 and transcription factor NF-kappaB, Nod1 and Nod2 recruited the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry site. In cells homozygous for the Crohn's disease-associated NOD2 frameshift mutation, mutant Nod2 failed to recruit ATG16L1 to the plasma membrane and wrapping of invading bacteria by autophagosomes was impaired. Our results link bacterial sensing by Nod proteins to the induction of autophagy and provide a functional link between Nod2 and ATG16L1, which are encoded by two of the most important genes associated with Crohn's disease.
Autophagy, which targets cellular constituents for degradation, is normally inhibited in metabolically replete cells by the metabolic checkpoint kinase mTOR. Although autophagic degradation of invasive bacteria has emerged as a critical host defense mechanism, the signals that induce autophagy upon bacterial infection remain unclear. We find that infection of epithelial cells with Shigella and Salmonella triggers acute intracellular amino acid (AA) starvation due to host membrane damage. Pathogen-induced AA starvation caused downregulation of mTOR activity, resulting in the induction of autophagy. In Salmonella-infected cells, membrane integrity and cytosolic AA levels rapidly normalized, favoring mTOR reactivation at the surface of the Salmonella-containing vacuole and bacterial escape from autophagy. In addition, bacteria-induced AA starvation activated the GCN2 kinase, eukaryotic initiation factor 2α, and the transcription factor ATF3-dependent integrated stress response and transcriptional reprogramming. Thus, AA starvation induced by bacterial pathogens is sensed by the host to trigger protective innate immune and stress responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.