Local anesthetics are effective in suppressing pain sensation, but most of these compounds act non-selectively, inhibiting the activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We have developed a photoisomerizable molecule named QAQ (Quaternary ammonium – Azobenzene – Quaternary ammonium) that enables rapid and selective optical control of nociception. QAQ is membrane-impermeant and it has no effect on most cells, but it infiltrates pain-sensing neurons through endogenous ion channels that are activated by noxious stimuli, primarily TRPV1. After QAQ accumulates intracellularly, it blocks voltage-gated ion channels in the trans but not the cis form. QAQ enables reversible optical silencing of mouse nociceptive neuron firing without exogenous gene expression and can serve as a light-sensitive analgesic in rats in vivo. Moreover, because intracellular QAQ accumulation is a consequence of nociceptive ion channel activity, QAQ-mediated photosensitization provides a new platform for understanding signaling mechanisms in acute and chronic pain.
Three vesicular glutamate transporters (VGLUTs) have been recently identified and their distribution has been mapped in various brain areas. In the present study, we used morphological approaches to investigate their expression in the rat lumbar spinal cord and dorsal root ganglia. Our results show a complementary distribution of VGLUT-expressing fibers in the spinal cord, with no overlapping in nerve endings. In the dorsal horn, VGLUT1 is most abundant in mechanosensory/proprioceptive deep afferent fibers. VGLUT2 and VGLUT3 are expressed only at moderate levels in primary sensory afferent fibers and are not used by central projections of nociceptive neurons. VGLUT1 and VGLUT2 mRNAs are mainly segregated in superficial laminae but colocalized in deeper laminae. Weak expression of VGLUT3 mRNA is only detected in deep laminae. The colocalization of VGLUT1 and VGLUT2 transcripts in most sensory neurons of the dorsal root ganglia is not in agreement with the clear segregation between the proteins in their spinal projections. Such a discrepancy suggests targeting mechanisms specific for each transporter and/or a distinct regulation of their translation. In the ventral horn, the expression of VGLUT1 and VGLUT2 mRNAs in motoneuron perikarya suggests the possible unexpected role of glutamate in the vertebrate neuromuscular junction. These results demonstrate the existence of different subpopulations of glutamate nerve terminals in the rat lumbar spinal cord and suggest that functionally distinct subsets of excitatory glutamatergic neuronal networks are involved in sensory processing and motor control.
Chronic pain states are characterized by long-term sensitization of spinal cord neurons that relay nociceptive information to the brain. Among the mechanisms involved, up-regulation of Cav1.2-comprising L-type calcium channel (Cav1.2-LTC) in spinal dorsal horn have a crucial role in chronic neuropathic pain. Here, we address a mechanism of translational regulation of this calcium channel. Translational regulation by microRNAs is a key factor in the expression and function of eukaryotic genomes. Because perfect matching to target sequence is not required for inhibition, theoretically, microRNAs could regulate simultaneously multiple mRNAs. We show here that a single microRNA, miR-103, simultaneously regulates the expression of the three subunits forming Cav1.2-LTC in a novel integrative regulation. This regulation is bidirectional since knocking-down or over-expressing miR-103, respectively, up-or down-regulate the level of Cav1.2-LTC translation. Functionally, we show that miR-103 knockdown in naive rats results in hypersensitivity to pain. Moreover, we demonstrate that miR-103 is downregulated in neuropathic animals and that miR-103 intrathecal applications successfully relieve pain, identifying miR-103 as a novel possible therapeutic target in neuropathic chronic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.