Five independent predictors of survival were identified: age, Karnofsky Performance Scale (KPS) score, extent of resection, and the degree of necrosis and enhancement on preoperative MR imaging studies. A significant survival advantage was associated with resection of 98% or more of the tumor volume (median survival 13 months, 95% confidence interval [CI] 11.4-14.6 months), compared with 8.8 months (95% CI 7.4-10.2 months; p < 0.0001) for resections of less than 98%. Using an outcome scale ranging from 0 to 5 based on age, KPS score, and tumor necrosis on MR imaging, we observed significantly longer survival in patients with lower scores (1-3) who underwent aggressive resections, and a trend toward slightly longer survival was found in patients with higher scores (4-5). Gross-total tumor resection is associated with longer survival in patients with GBM, especially when other predictive variables are favorable.
SUMMARY Despite extensive study, few therapeutic targets have been identified for glioblastoma (GBM). Here we show that patient derived glioma sphere cultures (GSCs) that resemble either the proneural (PN) or mesenchymal (MES) transcriptomal subtypes differ significantly in their biological characteristics. Moreover, we found that a subset of the PN GSCs undergo differentiation to a MES state in a TNFα/NF-κB dependent manner with an associated enrichment of CD44 subpopulations and radio-resistant phenotypes. We present data to suggest that the tumor microenvironment cell types such as macrophages/microglia may play an integral role in this process. We further show that the MES signature, CD44 expression, and NF-κB activation correlate with poor radiation response and shorter survival in patients with GBM.
The poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor. Because it has been suggested that circulating bone marrow-derived stem cells can be recruited into solid organs in response to tissue stresses, we hypothesized that human bone marrow-derived mesenchymal stem cells (hMSC) may have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. To test this, we isolated hMSCs from bone marrow of normal volunteers, fluorescently labeled the cells, and injected them into the carotid artery of mice bearing human glioma intracranial xenografts (U87, U251, and LN229). hMSCs were seen exclusively within the brain tumors regardless of whether the cells were injected into the ipsilateral or contralateral carotid artery. In contrast, intracarotid injections of fibroblasts or U87 glioma cells resulted in widespread distribution of delivered cells without tumor specificity. To assess the potential of hMSCs to track human gliomas, we injected hMSCs directly into the cerebral hemisphere opposite an established human glioma and showed that the hMSCs were capable of migrating into the xenograft in vivo. Likewise, in vitro Matrigel invasion assays showed that conditioned medium from gliomas, but not from fibroblasts or astrocytes, supported the migration of hMSCs and that platelet-derived growth factor, epidermal growth factor, or stromal cell-derived factor-1A, but not basic fibroblast growth factor or vascular endothelial growth factor, enhanced hMSC migration. To test the potential of hMSCs to deliver a therapeutic agent, hMSCs were engineered to release IFN-B (hMSC-IFN-B). In vitro coculture and Transwell experiments showed the efficacy of hMSC-IFN-B against human gliomas. In vivo experiments showed that treatment of human U87 intracranial glioma xenografts with hMSC-IFN-B significantly increase animal survival compared with controls (P < 0.05). We conclude that hMSCs can integrate into human gliomas after intravascular or local delivery, that this engraftment may be mediated by growth factors, and that this tropism of hMSCs for human gliomas can be exploited to therapeutic advantage. (Cancer Res 2005; 65(8): 3307-18)
SUMMARYBackgroundAfter brain metastasis resection, whole-brain radiation therapy (WBRT) decreases local recurrence but may cause cognitive decline. We performed this study to determine if stereotactic radiosurgery (SRS) to the surgical cavity improved local tumor tumor-free recurrence rates compared to surgical resection alone as an alternative to the need for immediate WBRT.MethodsThe main entry criteria for the study included patients >3 years of age, with a Karnofsky Performance Score ≥ 70, who were able to undergo an MRI scan and who had a complete resection of 1–3 brain metastases (the maximum diameter of the resection cavity had to be ≤4cm). Patients were assigned randomly to either SRS treatment of the resection cavity (within 30 days of surgery) or observation (OBS). Patients were stratified by histology, tumor size, and number of metastases. Patients were recruited at a single tertiary cancer center. The primary endpoint was time to local recurrence in the resection cavity assessed by blinded central review of brain MRI scans in the intention-to-treat population. The trial was registered at clinicaltrials.gov (Trial NCT00950001, status: closed to new participants).FindingsBetween 8/13/2009 and 2/16/2016, 132 patients were randomized to OBS (N=68) or SRS (N=64), with 128 patients available for analysis. We stratified by metastasis size (maximum diameter of ≥3 cm vs. <3 cm), histology (melanoma vs. other), and number of metastases (one vs. two or three). The 12-month local tumor recurrence-free rate was 43% (OBS) (95% CI 31%–59%) and 72% (SRS) (95% CI 60%–87%) (hazard ratio [HR] 0.46, 95% confidence interval [CI] 0.24–0.88, p=0.015).InterpretationThis prospective randomized trial of patients undergoing surgical resection for 1–3 brain metastases indicates that SRS administered to the resection cavity significantly lowers local recurrence compared to observation alone. Thus, the use of SRS after brain metastasis resection is an alternative to WBRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.