The vexing difficulty in delineating brain tumor margins represents a major obstacle toward better outcome of brain tumor patients. Current imaging methods are often limited by inadequate sensitivity, specificity, and spatial resolution. Here we show that a unique triple-modality Magnetic resonance imaging - Photoacoustic imaging – surface enhanced Raman scattering (SERS) nanoparticle (MPR) can accurately help delineate the margins of brain tumors in living mice both pre- and intra-operatively. The MPRs were detected by all three modalities with at least picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to specific MPR accumulation and retention by the tumors, allowing for non-invasive tumor delineation by all three modalities through the intact skull. Raman imaging allowed guidance of intra-operative tumor resection, and histological correlation validated that Raman imaging is accurately delineating brain tumor margins. This novel triple-modality nanoparticle approach holds promise to enable more accurate brain tumor imaging and resection.
High-grade gliomas are aggressive cancers that often become rapidly fatal. Immunotherapy using CD8+ cytotoxic T lymphocytes (CTLs), engineered to express both herpes simplex virus type-1 thymidine kinase (HSV1-TK) and interleukin (IL)-13 zetakine chimeric antigen receptor (CAR), is a treatment strategy with considerable potential. To optimize this and related immunotherapies, it may be helpful to monitor CTL viability and trafficking to glioma cells. We show that noninvasive positron emission tomography (PET) imaging with 9-[4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG) can track HSV1-tk reporter gene expression present in CAR-engineered CTLs. [18F]FHBG imaging was safe and enabled the longitudinal imaging of T cells stably transfected with a PET reporter gene in patients. Further optimization of this imaging approach for monitoring in vivo cell trafficking should greatly benefit various cell-based therapies for cancer.
MicroRNAs are critical regulators of cancer initiation, progression, and dissemination. Extensive evidence suggests that the inhibition of over-expressed oncogenic miRNA function can be a robust strategy for anticancer therapy. However, in vivo targeted delivery of miRNA therapeutics to various types of cancers remains a major challenge. Inspired by their natural synthesis and cargo delivery capabilities, researchers have exploited tumor cell-derived extracellular vesicles (TEVs) for the cancer-targeted delivery of therapeutics and theranostics. Here, we investigate a TEV-based nanoplatform for multimodal miRNA delivery and phototherapy treatments as well as the magnetic resonance imaging of cancer. We demonstrated loading of anti-miR-21 that blocks the function of endogenous oncogenic miR-21 over-expressed in cancer cells into and subsequent delivery by TEVs derived from 4T1 cells. We also produced Cy5-anti-miR-21-loaded TEVs from two other cancer cell lines (HepG2 and SKBR3) and confirmed their robust homologous and heterologous transfection efficiency and intracellular Cy5-anti-miR-21 delivery. Additionally, TEV-mediated anti-miR-21 delivery attenuated doxorubicin (DOX) resistance in breast cancer cells with a 3-fold higher cell kill efficiency than in cells treated with DOX alone. We then investigated TEVs as a biomimetic source for the functionalization of gold-iron oxide nanoparticles (GIONs) and demonstrated nanotheranostic properties of TEV-GIONs in vitro. TEV-GIONs demonstrated excellent T2 contrast in in vitro magnetic resonance (MR) imaging and resulted in efficient photothermal effect in 4T1 cells. We also evaluated the biodistribution and theranostic property of anti-miR-21 loaded TEV-GIONs in vivo by labeling with indocyanine green near-infrared dye. We further validated the tumor specific accumulation of TEV-GIONs using MR imaging. Our findings demonstrate that the distribution pattern of the TEV-anti-miR-21-GIONs correlated well with the tumor-targeting capability as well as the activity and efficacy obtained in response to doxorubicin combination treatments. TEVs and TEV-GIONs are promising nanotheranostics for future applications in cancer molecular imaging and therapy.
Resistance to androgen deprivation therapy, or castration-resistant prostate cancer (CRPC), is often accompanied by metastasis and is currently the ultimate cause of prostate cancer-associated deaths in men. Recently, secondary hormonal therapies have led to an increase of neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. Here, we identify that high levels of cell surface receptor Trop2 are predictive of recurrence of localized prostate cancer. Moreover, Trop2 is significantly elevated in CRPC and NEPC, drives prostate cancer growth, and induces neuroendocrine phenotype. Overexpression of Trop2 induces tumor growth and metastasis while loss of Trop2 suppresses these abilities in vivo. Trop2-driven NEPC displays a significant up-regulation of PARP1, and PARP inhibitors significantly delay tumor growth and metastatic colonization and reverse neuroendocrine features in Trop2-driven NEPC. Our findings establish Trop2 as a driver and therapeutic target for metastatic prostate cancer with neuroendocrine phenotype and suggest that high Trop2 levels could identify cancers that are sensitive to Trop2-targeting therapies and PARP1 inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.