HIV targets CD4 T cells, which are required for the induction of high-affinity antibody responses and the formation of long-lived B cell memory. The depletion of antigen-specific CD4 T cells during HIV infection is therefore believed to impede the development of protective B cell immunity. Although several different HIVrelated B cell dysfunctions have been described, the role of CD4 T follicular helper (TFH) cells in HIV infection remains unknown. Here, we assessed HIV-specific TFH responses in the lymph nodes of treatment-naive and antiretroviral-treated HIV-infected individuals. Strikingly, both the bulk TFH and HIV-specific TFH cell populations were significantly expanded in chronic HIV infection and were highly associated with viremia. In particular, GAG-specific TFH cells were detected at significantly higher levels in the lymph nodes compared with those of GP120-specific TFH cells and showed preferential secretion of the helper cytokine IL-21. In addition, TFH cell expansion was associated with an increase of germinal center B cells and plasma cells as well as IgG1 hypersecretion. Thus, our study suggests that high levels of HIV viremia drive the expansion of TFH cells, which in turn leads to perturbations of B cell differentiation, resulting in dysregulated antibody production.
Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually Xat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long Wngerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proofof-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes.
The P2X7 receptor (P2X7R) is an ATP-gated channel that mediates apoptosis of cells of the immune system. The capacity of P2X7R to form large pores depends on its large cytoplasmic tail, which harbors a putative TNFR-related death domain. Previous transfection studies indicated that mouse P2X7R forms pores much less efficiently than its counterparts from humans and rats. In this study, we demonstrate that an allelic mutation (P451L) in the predicted death domain of P2X7R confers a drastically reduced sensitivity to ATP-induced pore formation in cells from some commonly used strains of mice, i.e., C57BL/6 and DBA/2. In contrast, most other strains of mice, including strains derived from wild mice, carry P451 at this position as do rats and humans. The effects of the P451L mutation resemble those of the E496A mutation in human P2X7R. These P2X7R mutants may provide useful tools to decipher the molecular mechanisms leading to pore formation.
Background and Aims Detailed information on the immune response after second vaccination of cirrhotic patients and liver transplant (LT) recipients against SARS-CoV-2 is largely missing. We aimed at comparing the vaccine-induced humoral and T-cell responses of these vulnerable patient groups. Methods In this prospective cohort study, anti-SARS-CoV-2 spike-protein titers were determined using the DiaSorin LIAISON (anti-S Trimer) and Roche Elecsys (anti-S RBD) immunoassays in 194 patients (141 LT, 53 cirrhosis Child-Pugh A-C) and 56 healthy controls before and 10-84 days after second vaccination. The spike-specific T-cell response was assessed using an IFN-γ release assay (IGRA, EUROIMMUN). A logistic regression analysis was performed to identify predictors of low response. Results After the second vaccination, seroconversion was achieved in 63% of LT recipients and 100% of cirrhotic patients and controls using the anti-S Trimer assay. Median anti-SARS-CoV-2 titers of responding LT recipients were lower compared to cirrhotic patients and controls (p<0.001). Spike-specific T-cell response rates were 36.6%, 65.4%, and 100% in LT, cirrhosis, and controls, respectively. Altogether, 28% of LT recipients did neither develop a humoral nor a T-cell response after second vaccination. In LT recipients, significant predictors of absent or low humoral response were age >65y (OR: 4.57, 95%-CI 1.48-14.05) and arterial hypertension (OR: 2.50, 95%-CI 1.10-5.68), whereas vaccination failure was less likely with calcineurin inhibitor monotherapy than with other immunosuppressive regimens (OR: 0.36, 95%-CI 0.13-0.99). Conclusion Routine serological testing of the vaccination response and a third vaccination in patients with low or absent response seem advisable. These vulnerable cohorts need further research on the effects of heterologous vaccination and intermittent reduction of immunosuppression before booster vaccinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.