Considerable evidence indicates that autophagy plays a vital role in the biological processes of various cancers. The aim of this study is to evaluate the prognostic value of autophagy-related genes in patients with head and neck squamous cell carcinoma (HNSCC). Transcriptome expression profiles and clinical data acquired from The Cancer Genome Atlas (TCGA) database were analyzed by Cox proportional hazards model and Kaplan–Meier survival analysis to screen autophagy-related prognostic genes that were significantly correlated with HNSCC patients’ overall survival. Functional enrichment analyses were performed to explore biological functions of differentially expressed autophagy-related genes (ARGs) identified in HNSCC patients. Six ARGs (EGFR, HSPB8, PRKN, CDKN2A, FADD, and ITGA3) identified with significantly prognostic values for HNSCC were used to construct a risk signature that could stratify patients into the high-risk and low-risk groups. This signature demonstrated great value in predicting prognosis for HNSCC patients and was indicated as an independent prognostic factor in terms of clinicopathological characteristics (sex, age, clinical stage, histological grade, anatomic subdivision, alcohol history, smoking status, HPV status, and mutational status of the samples). The prognostic signature was also validated by data from the Gene Expression Omnibus (GEO) database and International Cancer Genome Consortium (ICGC). In conclusion, this study provides a novel autophagy-related gene signature for predicting prognosis of HNSCC patients and gives molecular insights of autophagy in HNSCC.
Bone tissue is remodeled through the catabolic function of the osteoclasts and the anabolic function of the osteoblasts. The process of bone homeostasis and metabolism has been identified to be co‐ordinated with several local and systemic factors, of which mechanical stimulation acts as an important regulator. Very recent studies have shown a mutual effect between bone and other organs, which means bone influences the activity of other organs and is also influenced by other organs and systems of the body, especially the nervous system. With the discovery of neuropeptide (calcitonin gene‐related peptide, vasoactive intestinal peptide, substance P, and neuropeptide Y) and neurotransmitter in bone and the adrenergic receptor observed in osteoclasts and osteoblasts, the function of peripheral nervous system including sympathetic and sensor nerves in bone resorption and its reaction to on osteoclasts and osteoblasts under mechanical stimulus cannot be ignored. Taken together, bone tissue is not only the mechanical transmitter, but as well the receptor of neural system under mechanical loading. This review aims to summarize the relationship among bone, nervous system, and mechanotransduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.