In order to increase nutritive values of soybean meal (SBM), 3 species of microbes were used to ferment SBM. Through a 3 × 3 orthogonal design and parameter measurements of soybean peptide and anti-nutritional factor contents in the fermented soybean meal (FSBM), it was estimated that the best microbial proportion of Bacillus subtilis, Hansenula anomala and Lactobacillus casei was 2:1:2 for SBM fermentation (P < 0.05). The further piglet feeding experiment showed that 10% FSBM substitute for SBM had no significant effect on growth performance of suckling piglets (d 7–28) (P > 0.05). However, newly-weaned piglets (d 28–38) fed 10% FSBM and different levels of plasma protein obtained higher average daily gain (ADG) and feed conversion ratio (FCR), compared with those without FSBM but with 6% plasma protein (P < 0.05). Piglets (d 38–68) fed diets supplemented with FSBM and soybean protein concentrate (SBPC) at 3.75% and 7.5% respectively increased nutrient digestibility, fecal enzyme activity and lactic acid bacteria counts, and decreased fecal Escherichia coli counts (P < 0.05), compared with the control. These data indicated that FSBM had positive effects on nutrient digestibility and fecal microflora for piglets.
-Aflatoxin B 1 (AFB 1 ) and zearalenone (ZEA) are the secondary toxic metabolites of fungi which contaminate a wide range of food and feedstuffs. Limiting exposure of humans and livestock to them is very essential. Among numerous methods of mycotoxin-degradation, biodegradation by microorganisms and enzymes is an effective and promising approach to eliminate their hazards. The present study aims to optimize the proportion of different species of beneficial microbes by means of response surface methodology (RSM) and its combination with mycotoxin-degradation enzymes. The results indicated that AFB 1 and ZEA degradation rates were 38.38% and 42.18% by individual Bacillus subtilis (P < 0.05); however, AFB 1 and ZEA degradation rates reached 45.49% and 44.90% (P < 0.05) when three probiotic species such as Bacillus subtilis, Lactobacillus casein and Candida utilis were at a ratio of 1:1:1, corresponding with the predictive value of the RSM model. The further experiment showed that AFB 1 and ZEA degradation rates were 63.95% and 73.51% (P < 0.05) when the compound of three probiotic species was combined with mycotoxin-degradation enzymes from Aspergillus oryzae at a ratio of 3:2. This result indicated that the combination of probiotics with mycotoxin-degradation enzymes is a promising new approach for synchronous detoxification of AFB 1 and ZEA.
This study was carried out to investigate the effects of orally administrated Lactobacillus casei and Enterococcus faecalis on performance, immune function and gut microbiota of suckling piglets. Neonatal piglets (n = 120) were randomly assigned to 4 groups, with 30 suckling piglets in each group. The piglets were from 15 litters, one male and one female piglet were selected for each group in each litter. The Control group was administrated with normal saline, the other groups with L. casei or E. faecalis or a combination of L. casei and E. faecalis at a ratio of 3:1. Each piglet was orally administrated with 1, 2, 3 and 4 ml probiotics or normal saline at the age of 1, 7, 14 and 21 d, respectively. The piglets were weaned at the age of 21 d. The results showed that compared with the Control group, the average daily gain of piglets administrated with probiotics was significantly increased, and the diarrhoea rate and mortality were significantly decreased (p < 0.05). After supplementation of the combined probiotics, the protease activity in stomach, duodenum and colon was increased and in all supplemented groups, the immunoglobulin A concentration in plasma was significantly higher (p < 0.05). The combined probiotics significantly increased villus length and the expression level of transforming growth factor-β in the jejunum (p < 0.05) but decreased the expression level of the jejunal tumour necrosis factor-α (p < 0.05). In addition, probiotics could regulate gut microbiota and increase microbial similarity coefficients for keeping piglet gut microbiota stable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.