Organic thin film field effect transistors of water-soluble cationic and anionic phthalocyanine derivatives were successfully prepared using the layer-by-layer deposition technique. The alternating film growth and subsequent transistor properties were studied with a variety of techniques including ellipsometry, UV−vis spectroscopy, polarized UV−vis spectroscopy, AFM, and field effect transistor measurements. A stepwise and regular deposition of copper(II) phthalocyanine tetrakis(methyl pyridinium) chloride and copper(II) phthalocyanine tetrasulfonic acid, tetrasodium salt multilayers in both pure water and 0.03 M NaCl solution was observed. Differences in linear growth were observed between pure water and 0.03 M NaCl-based solutions. Polarized UV−vis spectra indicated that the conjugated phthalocyanine ring lies almost flat on the substrate surface with a random orientation within the plane of the substrate. Unusual “ambipolar” transistor-like behavior was found for the films that can be attributed to an ion-modulated electrical conduction mechanism, which relies on the assistance of mobile ions to stabilize the oxidized or reduced species in the channel region.
Investigations on optical and dielectric properties of hybrid ultrathin layer-by-layer (LbL) films of gold nanoparticles (AuNPs) and polyelectrolytes under different pH conditions resulted in surface plasmon resonance (SPR) signal enhancement under attenuated total reflection (ATR) spectroscopy conditions. Theoretical considerations on the basis of the Maxwell-Garnett theory were made to compare with experimental results. LbL films with different layer architectures were fabricated from AuNPs and two polyelectrolytes: poly-(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) on Au and Ag thin film substrates for ATR. UV-vis spectroscopy and SPR spectroscopy were applied to study LbL film growth and monitor SPR shift upon pH switching. The (PAH/AuNPs) x multilayers showed an interesting dual-responsive SPR change as a function of pH and distance between AuNP layers and metal film. The addition of (PAH/PSS) y layers was found to act as an effective cushion to enhance this SPR response due to the significant swelling/shrinking of the film. In the case of [(PAH/PSS) y + (PAH/AuNPs) x ], both theoretical calculations and experimental results showed that the SPR response can either (a) move toward lower incident angle with a sharp peak shape upon swelling in pH ) 2 or (b) shift to a higher angle with a broadened peak shape after contraction in pH ) 10. This effect was found to be opposite to what is expected from LbL films made up of the polyelectrolytes alone. Moreover, increasing the distance between AuNPs and the metal films also decouples this enhancement effect. A two-wavelength experiment (red and green lasers) was used to quantitatively demonstrate this SPR response to pH switching. Finally, SPR imaging was employed to monitor the SPR change with pH switching between 2 and 10 on the [(PAH/PSS) 4 + (PAH/AuNPs) 2 ] film. Thus, on the basis of the SPR spectroscopic and SPR imaging pH response, a reproducible and stable sensing system can be successfully fabricated with these films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.