Opticospinal multiple sclerosis (OSMS) in Asians has similar features to the relapsing-remitting form of neuromyelitis optica (NMO) seen in Westerners. OSMS is suggested to be NMO based on the frequent detection of specific IgG targeting aquaporin-4 (AQP4), designated NMO-IgG. The present study sought to clarify the significance of anti-AQP4 autoimmunity in the whole spectrum of MS. Sera from 113 consecutive Japanese patients with clinically definite MS, based on the Poser criteria, were assayed for anti-AQP4 antibodies by immunofluorescence using GFP-AQP4 fusion protein-transfected HEK-293T cells. Sensitivity and specificity of the anti-AQP4 antibody assay, 83.3 and 100%, respectively, were calculated using serum samples with NMO-IgG status predetermined at the Mayo Clinic. The anti-AQP4 antibody positivity rate was significantly higher in OSMS patients (13/48, 27.1%) than those with CMS (3/54, 5.6%), other neurological diseases (0/52) or healthy controls (0/35). None of the 11 patients tested with a brainstem-spinal form of MS were positive. Among OSMS patients, the antibody positivity rate was highest in OSMS patients with longitudinally extensive spinal cord lesions (LESCLs) extending over three vertebral segments and brain lesions that fulfilled the Barkhof criteria (5/9, 55.6%). Multiple logistic analyses revealed that emergence of the anti-AQP4 antibody was positively associated only with a higher relapse rate, but not with optic-spinal presentation or LESCLs. Compared with anti-AQP4 antibody-negative CMS patients, anti-AQP4 antibody-positive MS patients showed significantly higher frequencies of severe optic neuritis, acute transverse myelitis and LESCLs while most conditions were also common to anti-AQP4 antibody-negative OSMS patients. The LESCLs in anti-AQP4 antibody-positive patients were located at the upper-to-middle thoracic cord, while those in anti-AQP4 antibody-negative OSMS patients appeared throughout the cervical-to-thoracic cord. On axial planes, the former most frequently showed central grey matter involvement, while holocord involvement was predominant in the latter. In contrast, LESCLs in anti-AQP4 antibody-negative CMS patients preferentially involved the mid-cervical cord presenting a peripheral white matter-predominant pattern, as seen in the short lesions. Anti-AQP4 antibody-positive MS patients fulfilling definite NMO criteria showed female preponderance, higher relapse rate, greater frequency of brain lesions and less frequent responses to interferon beta-1b than anti-AQP4 antibody-negative OSMS patients with LESCLs. These findings suggested that LESCLs are distinct in anti-AQP4 antibody positivity and clinical phenotypes. There were cases of anti-AQP4 antibody-positive MS/NMO distinct from CMS, and anti-AQP4 antibody-negative OSMS with LESCLs in Japanese. This indicated that the mechanisms producing LESCLs are also heterogeneous in cases with optic-spinal presentation, namely AQP4 autoimmunity-related and -unrelated.
There are two distinct subtypes of multiple sclerosis in Asians, opticospinal (OS-multiple sclerosis) and conventional (C-multiple sclerosis). In OS-multiple sclerosis, selective and severe involvement of the optic nerves and spinal cord is characteristic, though its mechanisms are unknown. The present study aimed to find out possible differences in the cytokine/chemokine profiles in CSF between OS-multiple sclerosis and C-multiple sclerosis and to delineate the relationships between these profiles and neuroimaging and pathological features. Sixteen cytokines/chemokines, namely interleukin (IL)-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 (p70), IL-13, IL-17, interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha, granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1beta (MIP-1beta), were measured simultaneously in CSF supernatants from 40 patients with relapsing-remitting multiple sclerosis (20 OS-multiple sclerosis and 20 C-multiple sclerosis) at relapse and 19 control patients with spinocerebellar degeneration (SCD), together with intracellular production of IFN-gamma and IL-4 in CSF CD4+ T cells. In CSF supernatants relative to controls, IL-17, MIP-1beta, IL-1beta and IL-13 were only significantly increased in OS-multiple sclerosis patients, while TNF-alpha was only significantly increased in C-multiple sclerosis patients, using a cut-off level of 1 pg/ml. IL-8 was significantly elevated in both OS-multiple sclerosis and C-multiple sclerosis patients. MCP-1 was significantly decreased in both OS-multiple sclerosis and C-multiple sclerosis patients, while IL-7 was only significantly decreased in C-multiple sclerosis patients. IL-17, IL-8 and IL-5 were significantly higher in OS-multiple sclerosis patients than in C-multiple sclerosis patients. The increases in IL-17 and IL-8 in OS-multiple sclerosis were still significant even after exclusion of the patients undergoing various immunomodulatory therapies. Assays of intracellular cytokine production revealed that both the IFN-gamma+IL-4- T-cell percentage and intracellular IFN-gamma/IL-4 ratio in CSF cells were significantly greater in C-multiple sclerosis patients than in controls. Contrarily, OS-multiple sclerosis patients showed not only a significantly greater percentage of IFN-gamma+IL-4- T cells than controls but also a significantly higher percentage of IFN-gamma-IL-4+ T cells than C-multiple sclerosis patients. Among the cytokines elevated in multiple sclerosis, only IL-8 showed a significant positive correlation with the Expanded Disability Status Scale of Kurtzke score. Both the length of the spinal cord lesions on MRI and the CSF/serum albumin ratio had a significant positive correlation with IL-8 and IL-17 in multiple sclerosis, in which the spinal cord lesions were significantly longer in OS-multiple sclerosis than in C-multiple sclerosis. Three of six spinal cord specimens from autopsied OS-multiple sclerosis cases demonstrated numerous myeloperoxidase-positive...
BACKGROUND AND PURPOSE:We investigated the relationship between tumor blood-flow measurement based on perfusion imaging by arterial spin-labeling (ASL-PI) and histopathologic findings in brain tumors.
In order to clarify the relationship between the clinical phenotype and the human leucocyte antigen (HLA) in multiple sclerosis in Asians, 93 Japanese patients with clinically definite multiple sclerosis underwent clinical MRI and HLA-DPB1 gene typing studies. According to a neurological examination, 29 patients were classified as opticospinal multiple sclerosis, 17 as spinal multiple sclerosis and 47 as Western type multiple sclerosis showing the involvement of multiple sites in the CNS including either the cerebrum, cerebellum or brainstem. The opticospinal multiple sclerosis showed a significantly higher age of onset, higher expanded disability status scale scores and higher CSF cell counts and protein content than the Western type multiple sclerosis. On brain and spinal cord MRI, the opticospinal multiple sclerosis showed a significantly lower number of brain lesions, but a higher frequency of gadolinium-enhancement of the optic nerve and a higher frequency of spinal cord atrophy than in Western type multiple sclerosis. The frequency of the HLA-DPB1*0501 allele was found to be significantly greater in opticospinal multiple sclerosis (93%) than in healthy controls (63%, corrected P value = 0.0091 and relative risk = 7.9), but not in Western type multiple sclerosis (66%) or spinal multiple sclerosis (82%). The marked differences in the clinical and MRI findings as well as in the immunogenetic backgrounds between the opticospinal multiple sclerosis and Western-type multiple sclerosis together suggest that HLA-DPB1*0501-associated opticospinal multiple sclerosis is a distinct subtype of multiple sclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.