Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.
The giant panda genome codes for all necessary enzymes associated with a carnivorous digestive system but lacks genes for enzymes needed to digest cellulose, the principal component of their bamboo diet. It has been posited that this iconic species must therefore possess microbial symbionts capable of metabolizing cellulose, but these symbionts have remained undetected. Here we examined 5,522 prokaryotic ribosomal RNA gene sequences in wild and captive giant panda fecal samples. We found lower species richness of the panda microbiome than of mammalian microbiomes for herbivores and nonherbivorous carnivores. We detected 13 operational taxonomic units closely related to Clostridium groups I and XIVa, both of which contain taxa known to digest cellulose. Seven of these 13 operational taxonomic units were unique to pandas compared with other mammals. Metagenomic analysis using ∼37-Mbp contig sequences from gut microbes recovered putative genes coding two cellulose-digesting enzymes and one hemicellulose-digesting enzyme, cellulase, β-glucosidase, and xylan 1,4-β-xylosidase, in Clostridium group I. Comparing glycoside hydrolase profiles of pandas with those of herbivores and omnivores, we found a moderate abundance of oligosaccharide-degrading enzymes for pandas (36%), close to that for humans (37%), and the lowest abundance of cellulases and endohemicellulases (2%), which may reflect low digestibility of cellulose and hemicellulose in the panda's unique bamboo diet. The presence of putative cellulose-digesting microbes, in combination with adaptations related to feeding, physiology, and morphology, show that giant pandas have evolved a number of traits to overcome the anatomical and physiological challenge of digesting a diet high in fibrous matter.
The panda lineage dates back to the late Miocene and ultimately leads to only one extant species, the giant panda (Ailuropoda melanoleuca). Although global climate change and anthropogenic disturbances are recognized to shape animal population demography their contribution to panda population dynamics remains largely unknown. We sequenced the whole genomes of 34 pandas at an average 4.7-fold coverage and used this data set together with the previously deep-sequenced panda genome to reconstruct a continuous demographic history of pandas from their origin to the present. We identify two population expansions, two bottlenecks and two divergences. Evidence indicated that, whereas global changes in climate were the primary drivers of population fluctuation for millions of years, human activities likely underlie recent population divergence and serious decline. We identified three distinct panda populations that show genetic adaptation to their environments. However, in all three populations, anthropogenic activities have negatively affected pandas for 3,000 years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.