Previous studies have suggested that hepatitis B virus (HBV) variants may account for the presence of HBV DNA in hepatitis B surface antigen (HBsAg)-negative patients (occult HBV infection). However, it is not known how widespread these variants are and how they influence the course of liver disease. To determine the prevalence of variants within the major hydrophilic region (MHR) of HBsAg, we investigated 2,565 subjects, including subjects with chronic hepatitis, cryptogenic cirrhosis, hemodialysis patients, and blood donors. Chronic hepatitis B virus (HBV) infection is a global public health problem that affects over 300 million individuals, or 5% of the world's population.
This study aims to systematically determine the activities and expressions of cytochrome P450s (CYP) in hepatocellular carcinoma (HCC) patients to support their optimal use in personalized treatment of HCC. Activities of seven major drug-metabolizing CYP enzymes (CYP1A2, 2A6, 2C8, 2C9, 2D6, 2E1, and 3A4) were determined in tumors and pericarcinomatous tissues harvested from 26 patients with hepatitis B virus-positive HCC using probe substrates. Protein and mRNA levels of these CYPs were also measured using isotope label-free LC/MS-MS method and realtime PCR, respectively. Maximal metabolic velocity (V max ) of CYP probe substrates was decreased by 2.5-to 30-fold in tumor microsomes, accompanied by a corresponding decrease in their protein and mRNA expression levels. However, K m values and turnover numbers of substrates in tumor microsomes were not changed. High correlations between activities and CYP protein levels were also observed, but the correlation between activities and mRNA levels was often poor. There was a major decrease in the degree of correlation in CYP expression in tumor tissues, suggesting that CYP expression levels are greatly disrupted by the tumorigenic process. Our unprecedented systemic study of the effects of HCC on CYPs demonstrated that activities of CYPs were seriously impaired and their expression patterns were severely altered by HCC. We proposed that determination of the CYP protein expression profile by LC/MS-MS in each patient is a promising approach that can be clinically used for individualized treatment of HCC.
Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. The accumulation of Aβ in the brain is thought to play a causative role in the development of cognitive dysfunction in Alzheimer's disease. The p75 neurotrophin receptor is of great importance to protect against the Aβ burden and its expression is regulated by histone acetylation. This study investigated whether the phytochemical sulforaphane, a pan-histone deacetylase inhibitor, up-regulates the p75 neurotrophin receptor expression via affecting histone acetylation in protection against Alzheimer's disease. We found that sulforaphane ameliorated behavioral cognitive impairments and attenuated brain Aβ burden in Alzheimer's disease model mice. Additionally, sulforaphane reduced the expression of histone deacetylase1, 2, and 3, up-regulated p75 neurotrophin receptor, and increased levels of acetylated histone 3 lysine 9 and acetylated histone 4 lysine 12 in the cerebral cortex of Alzheimer's disease model mice as well as in Aβ-exposed SH-SY5Y cells. Furthermore, silencing of histone deacetylase1 and 3, but not histone deacetylase2, gene expression with small interfering RNA caused up-regulation of p75 neurotrophin receptor in SH-SY5Y cells. In conclusion, this study demonstrates that sulforaphane can ameliorate neurobehavioral deficits and reduce the Aβ burden in Alzheimer's disease model mice, and the mechanism underlying these effects may be associated with up-regulation of p75 neurotrophin receptor mediated, apparently at least in part, via reducing the expression of histone deacetylase1 and 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.