We report a measurement of the single top quark production cross section in 2.2 fb −1 of pp collision data collected by the Collider Detector at Fermilab at √ s = 1.96 TeV. Candidate events are classified as signal-like by three parallel analyses which use likelihood, matrix element, and neural network discriminants. These results are combined in order to improve the sensitivity. We observe a signal consistent with the standard model prediction, but inconsistent with the backgroundonly model by 3.7 standard deviations with a median expected sensitivity of 4.9 standard deviations. We measure a cross section of 2.2 +0.7 −0.6 (stat + sys) pb, extract the CKM matrix element value |V tb | = 0.88 +0.13 −0.12 (stat + sys) ± 0.07(theory), and set the limit |V tb | > 0.66 at the 95% C.L.
We have measured the W -boson mass MW using data corresponding to 2.2 fb −1 of integrated luminosity collected in pp collisions at √ s = 1.96 TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470 126 W → eν candidates and 624 708 W → µν candidates yield the measurement MW = 80 387 ± 12stat ± 15syst = 80 387 ± 19 MeV/c 2 . This is the most precise measurement of the W -boson mass to date and significantly exceeds the precision of all previous measurements combined. PACS numbers: 13.38.Be, 14.70.Fm, 12.15.Ji, 13.85.Qk The mass of the W boson, M W , is an important parameter of the standard model (SM) of particle physics. Precise measurements of M W and of other electroweak observables significantly constrain the mass of the as-yet * Deceased † With visitors from
We report on a search for new particles in the diphoton channel using a data sample of pp collisions at √ s = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron, with an integrated luminosity of 5.4 fb −1 . The diphoton invariant mass spectrum of the data agrees well with the standard model expectation. We set upper limits on the production cross section times branching ratio for the Randall-Sundrum graviton, as a function of diphoton mass. We subsequently derive lower limits on the graviton mass of 459 GeV/c 2 and 963 GeV/c 2 , at the 95% confidence level, for coupling parameters (k/M P l ) of 0.01 and 0.1 respectively.
We present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. We analyze events from the single lepton plus jets final state (tt-->W(+)bW(-)b-->lnubqq'b). The top-quark mass is extracted using a direct calculation of the probability density that each event corresponds to the tt final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb(-1) of integrated luminosity, we achieve the single most precise measurement of the top-quark mass, 170.8+/-2.2(stat.)+/-1.4(syst.) GeV/c(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.