T2K (Tokai to Kamioka) is a long baseline neutrino experiment with the primary goal of measuring the neutrino mixing angle θ 13 . It uses a muon neutrino beam, produced at the J-PARC accelerator facility in Tokai, sent through a near detector complex on its way to the far detector, Super-Kamiokande. Appearance of electron neutrinos at the far detector due to oscillation is used to measure the value of θ 13 .
The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle θ13θ13 by observing νeνe appearance in a νμνμ beam. It also aims to make a precision measurement of the known oscillation parameters, View the MathML sourceΔm232 and sin22θ23sin22θ23, via νμνμ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem
Observations of exotic structures in the J=ψp channel, which we refer to as charmonium-pentaquark states, in Λ 0 b → J=ψK − p decays are presented. The data sample corresponds to an integrated luminosity of 3 fb −1 acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the J=ψp mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380 AE 8 AE 29 MeV and a width of 205 AE 18 AE 86 MeV, while the second is narrower, with a mass of 4449.8 AE 1.7 AE 2.5 MeV and a width of 39 AE 5 AE 19 MeV. The preferred J P assignments are of opposite parity, with one state having spin 3=2 and the other 5=2.
and comprise 7.482 × 10 20 protons on target in neutrino mode, which yielded in the far detector 32 e-like and 135 μ-like events, and 7.471 × 10 20 protons on target in antineutrino mode, which yielded 4 e-like and 66 μ-like events. Reactor measurements of sin 2 2θ 13 have been used as an additional constraint. The one-dimensional confidence interval at 90% for the phase δ CP spans the range (−3.13, −0.39) for normal mass ordering. The CP conservation hypothesis (δ CP ¼ 0, π) is excluded at 90% C.L.
The branching fraction ratio R(D^{*})≡B(B[over ¯]^{0}→D^{*+}τ^{-}ν[over ¯]_{τ})/B(B[over ¯]^{0}→D^{*+}μ^{-}ν[over ¯]_{μ}) is measured using a sample of proton-proton collision data corresponding to 3.0 fb^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ^{-}→μ^{-}ν[over ¯]_{μ}ν_{τ}. The semitauonic decay is sensitive to contributions from non-standard-model particles that preferentially couple to the third generation of fermions, in particular, Higgs-like charged scalars. A multidimensional fit to kinematic distributions of the candidate B[over ¯]^{0} decays gives R(D^{*})=0.336±0.027(stat)±0.030(syst). This result, which is the first measurement of this quantity at a hadron collider, is 2.1 standard deviations larger than the value expected from lepton universality in the standard model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.