Abstract-We report on a heterogeneously integrated InP/SOI laser source realized through DVS-BCB wafer bonding. The hybrid lasers present several new features. The III-V laser is only 1.7μm wide, reducing the power consumption of the device. The silicon waveguide thickness is 400 nm, compatible with highperformance modulator designs and allowing efficient coupling to a standard 220nm high index contrast silicon waveguide layer. In order to make the mode coupling efficient, both the III-V waveguide and silicon waveguide are tapered, with a tip width for the III-V waveguide of around 800 nm. These new features lead to good laser performance: a lasing threshold as low as 30mA and an output power of more than 4mW at room temperature in continous wave operation regime. Continuous wave lasing up to 70C is obtained.Index Terms-Hybrid integrated circuits, silicon laser, silicon-on-insulator (SOI) technology, adiabatic taper.
An interface characterization technique, termed the Fermi-level efficiency (FLE) method, is proposed for evaluating the passivation level of high trap density oxide-semiconductor interfaces. Based on the characteristic charge trapping time-energy relation and the conductance method, the FLE method examines the Fermi-level displacement at the oxide-semiconductor interface under applied gate bias. The obtained Fermi-level efficiencies can be used to assess the interface qualities of metal-oxide-semiconductor devices with III-V and other novel substrate materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.