Thousands of transiting exoplanets have been discovered, but spectral analysis of their atmospheres has so far been dominated by a small number of exoplanets and data spanning relatively narrow wavelength ranges (such as 1.1-1.7 micrometres). Recent studies show that some hot-Jupiter exoplanets have much weaker water absorption features in their near-infrared spectra than predicted. The low amplitude of water signatures could be explained by very low water abundances, which may be a sign that water was depleted in the protoplanetary disk at the planet's formation location, but it is unclear whether this level of depletion can actually occur. Alternatively, these weak signals could be the result of obscuration by clouds or hazes, as found in some optical spectra. Here we report results from a comparative study of ten hot Jupiters covering the wavelength range 0.3-5 micrometres, which allows us to resolve both the optical scattering and infrared molecular absorption spectroscopically. Our results reveal a diverse group of hot Jupiters that exhibit a continuum from clear to cloudy atmospheres. We find that the difference between the planetary radius measured at optical and infrared wavelengths is an effective metric for distinguishing different atmosphere types. The difference correlates with the spectral strength of water, so that strong water absorption lines are seen in clear-atmosphere planets and the weakest features are associated with clouds and hazes. This result strongly suggests that primordial water depletion during formation is unlikely and that clouds and hazes are the cause of weaker spectral signatures.
The planet in the system HD209458 is the first one for which repeated transits across the stellar disk have been observed. Together with radial velocity measurements, this has led to a determination of the planet's radius and mass, confirming it to be a gas giant. But despite numerous searches for an atmospheric signature, only the dense lower atmosphere of HD209458b has been observed, through the detection of neutral sodium absorption. Here we report the detection of atomic hydrogen absorption in the stellar Lyman alpha line during three transits of HD209458b. An absorption of 15 +/- 4% (1sigma) is observed. Comparison with models shows that this absorption should take place beyond the Roche limit and therefore can be understood in terms of escaping hydrogen atoms.
HH 30 in Taurus has been imaged with the Hubble Space T elescope WFPC2. The images show in reÑected light a Ñared disk with a radius of about 250 AU that obscures the protostar. The disk resembles detailed accretion disk models that constrain its density distribution and show that its inclination is less than 10¡. There are bipolar emission-line jets perpendicular to the disk, a very clear demonstration of the standard paradigm for accretion disk and jet systems. However, asymmetries in the light distribution show that the disk has not completely settled into a quasi-equilibrium accretion state, or that some of the observed scattering is from an asymmetric envelope. The emission-line jet itself is resolved into a number of knots with typical lengths and separations of much smaller and more numerous than 0A .4, indicated by lower resolution ground-based studies. There are indications of still Ðner structures in the jet all the way to the resolution limit ofThe knots have proper motions ranging from 100 to 300 0A .1. km s~1 and are therefore generated at the surprisingly high rate of about 0.4 knots per jet per year. The jet appears to be collimated within a cone of opening angle 3¡ and can be seen to within 30 AU of the star.Both single-and multiple-scattering disk models have a range of possible solutions, but by requiring pressure support and temperature equilibrium, a self-consistent model emerges. There is evidence for pressure support because the disk appears to have a Gaussian height proÐle. The temperature at each point in the disk is determined by the disk geometry, which in turn Ðxes the temperature in a selfconsistent manner. The extinction to the protostar is unknown but constrained to be greater than 24 mag. The optical properties of the scattering grains in the disk are determined and found to imply a large scattering asymmetry, but they seem to follow the interstellar reddening law. The absolute magnitude and colors of the unseen protostar, which has a brightness in the I bandpass of about 0.16 times solar and is very red, are obtained. The disk mass is about 0.006 times solar and has an expected lifetime of about 105 yr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.