Applied for the first time to mobile radio propagation modeling at the beginning of the nineties, ray tracing is now living a second youth. It is probably the best model to assist in the design and planning of future short-range, millimeter-wave wireless systems, where the more limited propagation environment with respect to UHF frequencies allows to overcome traditional high-CPU time limitations while the higher operating frequency makes ray-optics approximations less drastic and allows to achieve an unprecedented level of accuracy. An overview of ray tracing propagation modeling is given in this paper, with a special attention to future prospects and applications. In particular, frontiers of ray-based propagation modeling such as extension to diffuse scattering, multidimensional channel characterization, multiple-input multiple-output (MIMO) capacity assessments, and future applications such as real-time ray tracing are addressed in the paper with reference to the work recently carried out at the University of Bologna.
The investigation of the modulated, backscattered contribution from UHF RFID Transponders is a crucial issue for the reliable evaluation of the behavior and the performance of RFID systems. The backscattered, radiated field by a UHF Transponder is described by means of a simple and complete analytical expression. The tag radar cross section (RCS) and the bit error rate (BER) at the Reader are evaluated by means of the achieved formula, and the results are in perfect agreement with previous available publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.