The European Space Agency's Planck satellite, launched on 14 May 2009, is the third-generation space experiment in the field of cosmic microwave background (CMB) research. It will image the anisotropies of the CMB over the whole sky, with unprecedented sensitivity ( ΔT T ∼ 2 × 10 −6 ) and angular resolution (∼5 arcmin). Planck will provide a major source of information relevant to many fundamental cosmological problems and will test current theories of the early evolution of the Universe and the origin of structure. It will also address a wide range of areas of astrophysical research related to the Milky Way as well as external galaxies and clusters of galaxies. The ability of Planck to measure polarization across a wide frequency range (30−350 GHz), with high precision and accuracy, and over the whole sky, will provide unique insight, not only into specific cosmological questions, but also into the properties of the interstellar medium. This paper is part of a series which describes the technical capabilities of the Planck scientific payload. It is based on the knowledge gathered during the on-ground calibration campaigns of the major subsystems, principally its telescope and its two scientific instruments, and of tests at fully integrated satellite level. It represents the best estimate before launch of the technical performance that the satellite and its payload will achieve in flight. In this paper, we summarise the main elements of the payload performance, which is described in detail in the accompanying papers. In addition, we describe the satellite performance elements which are most relevant for science, and provide an overview of the plans for scientific operations and data analysis.
The European Space Agency's Planck satellite was launched on 14 May 2009, and has been surveying the sky stably and continuously since 13 August 2009. Its performance is well in line with expectations, and it will continue to gather scientific data until the end of its cryogenic lifetime. We give an overview of the history of Planck in its first year of operations, and describe some of the key performance aspects of the satellite. This paper is part of a package submitted in conjunction with Planck's Early Release Compact Source Catalogue, the first data product based on Planck to be released publicly. The package describes the scientific performance of the Planck payload, and presents results on a variety of astrophysical topics related to the sources included in the Catalogue, as well as selected topics on diffuse emission.
Abstract. In this letter we report on the accuracy of the attitude, misalignment, orbit and time correlation which are used to perform scientific analyses of the INTEGRAL data. The boresight attitude during science pointings has an accuracy of 3 arcsec. At the center of the field, the misalignments have been calibrated leading to a location accuracy of 4 to 40 arcsec for the different instruments. The spacecraft position is known within 10 m. The relative timing between instruments could be reconstructed within 10 µs and the absolute timing within 40 µs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.