Methane (CH4) emission traits were previously found to be heritable and repeatable in sheep fed alfalfa pellets in respiration chambers (RC). More rapid screening methods are, however, required to increase genetic progress and to provide a cost-effective method to the farming industry for maintaining the generation of breeding values in the future. The objective of the current study was to determine CH4 and carbon dioxide (CO2) emissions using several 1-h portable accumulation chamber (PAC) measurements from lambs and again as ewes while grazing ryegrass-based pasture. Many animals with PAC measurements were also measured in RC while fed alfalfa pellets at 2.0 × maintenance metabolizable energy requirements (MEm). Heritability estimates from mixed models for CH4 and CO2 production (g/d) were 0.19 and 0.16, respectively, when measured using PAC with lambs; 0.20 and 0.27, respectively, when measured using PAC with ewes; and 0.23 and 0.34, respectively, when measured using RC with lambs. For measured gas traits, repeatabilities of measurements collected 14 d apart ranged from 0.33 to 0.55 for PAC (combined lambs and ewes) and were greater at 0.65 to 0.76 for the same traits measured using RC. Genetic correlations (rg) between PAC in lambs and ewes were 0.99 for CH4, 0.93 for CH4 + CO2, and 0.85 for CH4/(CH4 + CO2), suggesting that CH4 emissions in lambs and ewes are the same trait. Genetic correlations between PAC and RC measurements were lower, at 0.62 to 0.67 for CH4 and 0.41 to 0.42 for CH4 + CO2, likely reflecting different environmental conditions associated with the protocols used with the 2 measurement methods. The CH4/(CH4 + CO2) ratio was the most similar genetic trait measured using PAC (both lambs and ewes, 63% and 66% selection efficiency, respectively) compared with CH4 yield (g/kg DMI) measured using RC. These results suggest that PAC measurements have considerable value as a rapid low-cost method to estimate breeding values for CH4 emissions in sheep.
Background: Currently most pastoral farmers rely on anthelmintic drenches to control gastrointestinal parasitic nematodes in sheep. Resistance to anthelmintics is rapidly increasing in nematode populations such that on some farms none of the drench families are now completely effective. It is well established that host resistance to nematode infection is a moderately heritable trait. This study was undertaken to identify regions of the genome, quantitative trait loci (QTL) that contain genes affecting resistance to parasitic nematodes.
This work investigated effects of carrying 0, 1, or 2 copies of the A allele resulting from the g+6723G-A transition in growth differentiation factor gene (GDF8) in New Zealand Texel-cross sheep at different lamb ages and carcass weights. Two Texel-cross sires carrying 1 copy of the A allele were mated to approximately 200 ewes carrying 0, 1, or 2 copies of the A allele. A total of 187 progeny were generated and genotyped to determine whether they were carrying 0, 1, or 2 copies of the A allele. The progeny were assigned to 1 of 4 slaughter groups balanced for the 3 genotypes, sex, and sire. The 4 groups were slaughtered commercially when their average BW (across all progeny in the slaughter group) reached 33, 40, 43, and 48 kg, respectively. Measurements of BW, and carcass dimensions and yield were made on all animals using Viascan (a commercial 2-dimensional imaging system that estimates lean content of the carcass as a percentage of total carcass weight). Additional measurements were made on the fourth slaughter group, which was computed tomography scanned at each slaughter time point to obtain 4 serial measures of lean and fat as estimated from the computed tomography images. The A allele did not have an effect on any BW traits. The A allele was associated with increased muscle and decreased fat across the variety of measures of muscling and fat, explaining between 0.2 and 1.1 of a residual SD unit. Estimates for an additive effect were significant and were positive for muscle and negative for fat traits. No dominance effect estimates (positive or negative) were significant. There was no significant interaction between A allele number and carcass weight or slaughter group for any trait. This is the first systematic study of the effect of the A allele copy number over a range of carcass weights (13 to 20 kg) and ages and results suggest the size of the effect across these endpoints is proportionately the same. Testing for the A allele therefore offers breeders the potential to improve rates of genetic gain for lean-meat yield across most production systems.
Background: Gastrointestinal nematodes constitute a major cause of morbidity and mortality in grazing ruminants. Individual animals or breeds, however, are known to differ in their resistance to infection. Gene expression profiling allows us to examine large numbers of transcripts simultaneously in order to identify those transcripts that contribute to an animal's susceptibility or resistance.
Bone density (BD) is an important factor in osteoporotic fracture risk in humans. However, BD is a complex trait confounded by environmental influences and polygenic inheritance. Sheep provide a potentially useful model for studying differences in BD, as they provide a means of circumventing complex environmental factors and are a similar weight to humans. The aims of this study were to establish whether there is genetic variation in BD in sheep and then to localise quantitative trait loci (QTLs) associated with this variation. We also aimed to evaluate the relationship between fat and muscle body components and BD in sheep. Results showed that there was significant (P Ͻ 0.01) genetic variation among Coopworth sheep sires for BD. This genetic difference was correlated (P Ͻ 0.01) with body weight and muscle mass. A number of QTLs exceeding the suggestive threshold were identified (nine in total). Of these, two (chromosomes 1, P Ͻ 0.05; chromosome 24, P Ͻ 0.01) were significant using genome-wide permutation significance thresholds (2000 iterations). The position of the QTL on chromosome 24 coincided with a number of other body composition QTLs, indicating possible pleiotropic effects or the presence of multiple genes affecting body composition at that site. This study shows that sheep are potentially a useful model for studying the genetics of BD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.