Highly peaked density and pressure profiles in a new operating regime have been observed on the Tokamak Fusion Test Reactor (TFTR). The qprofile has a region of reversed magnetic shear extending from the magnetic axis to r / u-0.3-0.4. The central electron density rises from 0.45 x lo2' m-3 to nearly 1.2 x lo2' m-' during neutral beam injection. The electron particle diffusivity drops precipitously in the plasma core with the onset of the improved confinement mode and can be reduced by a factor of N 50 to near the neoclassical particle diffusivity level.
levels which might have a significant role in the light shift of the 22p level due to the 1.06-/im laser field are 6s, 7s, Ad, and 5d. These are far from being resonantly coupled to the 22p level, at least 1700 cm" 1 away. Their relative positions are such that their combined effects are partially cancelled* A rough evaluation showed that under these conditions the 5d level, which is expected to be responsible for the largest effect, contributes to the shift of the 22p level an amount of approximately 3xl0" 3 MHz/ MW-cm' 2 . This is at least 4 orders of magnitude less than the measured shift, and is thus completely negligible, With respect to the shift Lv g of the ground state, since it cannot be measured alone the best procedure is to calculate it as carefully and precisely possible. A calculation based on Fig. 1 has been carried out. 6 The result is &v g = -26.3 MHz/MW-cm" 2 . The dashed line in Fig. 3 corresponds to the sum of the two calculated shifts Ai/ e + Ay g , whereas the straight line corresponds to a least-squares fit on the measured shifts. Agreement between experimental and theoretical results is satisfactory.To conclude, this experiment provides clear evidence for the shift of a Rydberg level, due to an intense and strongly nonresonant em field. It is of interest to note that in a pure quantum treat-PACS numbers: 52.55.Gb, 52.35.Py On the PDX tokamak, large-amplitude magnetohydrodynamic (MHD) fluctuations have been observed during plasma heating by injection of high-ment, radiative corrections can be interpreted as the sum of spontaneous and stimulated radiative corrections. The net effect of spontaneous radiative corrections due to vacuum fluctuations is well known to be responsible for the Lamb shift. In the same spirit, the light shifts which have been studied in our experiment can perhaps be viewed as resulting from the stimulated radiative corrections induced by an intense and nonresonant em field.We thank Professor CI. Cohen-Tannoudji for many helpful discussions concerning both the experiment and its interpretation. We are indebted to Dr. M. Aymar and Dr. M. Crance for their calculation of the shift of the ground state.Strong magnetohydrodynamic activity has been observed in PDX neutral-be am-heated discharges. It occurs for fi T q^ 0.045 and is associated with a significant loss of fast ions and a drop in neutron emission. As much as 20%~-40% of the beam heating power may be lost. The instability occurs in repetitive bursts of oscillations of ^ 1 msec duration at 1-6-msec intervals. The magnetohydrodynamic activity has been dubbed the "fishbone instability" from its characteristic signature on the Mirnov coils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.