Recent studies on deep-sea sponges have focused on mapping contemporary distributions while little work has been done to map historical distributions; historical distributions can provide valuable information on the time frame over which species have co-evolved and may provide insight into the reasons for their persistence or decline. Members of the sponge family Geodiidae are dominant members of deep-sea sponge assemblages in the northwestern Atlantic. They possess unique spicules called sterrasters, which undergo little transport in sediment and can therefore indicate the Geodiidae sponge historical presence when found in sediment cores. This study focuses on the slopes of Flemish Cap and Grand Bank, important fishing grounds off the coast of Newfoundland, Canada, in international waters. Sediment cores collected in 2009 and 2010 were visually inspected for sponge spicules. Cores containing spicules were sub-sampled and examined under a light microscope for the presence of sterrasters. These cores were also dated using X-radiographs and grouped into five time categories based on known sediment horizons, ranging from 17,000 years BP to the present. Chronological groupings identified Geodiidae sponges in four persistent sponge grounds. The oldest sterrasters were concentrated in the eastern region of the Flemish Cap and on the southeastern slope of the Grand Bank. Opportunistic sampling of a long core in the southeastern region of the Flemish Cap showed the continuous presence of sponge spicules to more than 130 ka BP. Our results indicate that the geodiids underwent a significant range expansion following deglaciation, and support a contemporary distribution that is not shaped by recent fishing activity.
We report the energy-resolved broadband timing analysis of the black hole X-ray transient MAXI J1631-479 during its 2019 outburst from February 11 to April 9, using data from the Insight−Hard X-ray Modulation Telescope (Insight-HXMT), which caught the source from its hard-intermediate state to the soft state. Thanks to the large effective area of Insight-HXMT at high energies, we are able to present the energy dependence of fast variability up to ∼100 keV. Type-C quasi-periodic oscillations (QPOs) with a frequency varying between 4.9 and 6.5 Hz are observed in the 1–100 keV energy band. While the QPO fractional rms increases with photon energy from 1 keV to ∼10 keV and remains more or less constant from ∼10 keV to ∼100 keV, the rms of the flat-top noise first increases from 1 keV to ∼8 keV and then drops to less than 0.1% above ∼30 keV. We suggest that the disappearance of the broadband variability above 30 keV could be caused by the nonthermal acceleration in the Comptonizing plasma. At the same time, the QPOs could be produced by the precession of either a small-scale jet or a hot inner flow model.
Based on spectroscopic observations for the eclipsing binaries CSTAR036162 and CSTAR055495 with the WiFeS/2.3 m telescope at SSO and CSTAR057775 with the Mage/MagellanI at LCO in 2017, stellar parameters are derived. More than 100 nights of almost-continuous light curves reduced from the time-series photometric observations by CSTAR at Dome A of Antarctic in i in 2008 and in g and r in 2009, respectively, are applied to find photometric solutions for the three binaries with the Wilson-Devinney code. The results show that CSTAR036162 is a detached configuration with the mass ratio q=0.354±0.0009, while CSTAR055495 is a semi-detached binary system with the unusual q=0.946±0.0006, which indicates that CSTAR055495 may be a rare binary system with mass ratio close to one and the secondary component filling its Roche Lobe. This implies that a mass-ratio reversal has just occurred and CSTAR055495 is in a rapid mass-transfer stage. Finally, CSTAR057775 is believed to be an A-type WUMa binary with q=0.301±0.0008 and a fill-out factor of f=0.742(8).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.