continuous exposure to CsA in utero seemingly impairs T-, B-, and NK-cell development and/or maturation, and most of its effects are still apparent at 1 year, which might suggest that conventional vaccinations should be delayed in these infants.
The intermediates in the oxidation of deoxyhemoglobin by ferricyanide in 0.1 M KCl, at 20 degrees C and three pH values, were studied by cryogenic techniques. Data analysis was carried out according to a simple four rate constant model, ignoring the functional heterogeneity of the subunits, to simulate the time courses of the oxidation reaction, as studied by the stopped-flow technique [Antonini et al., (1965) Biochemistry 4, 345], which show anticooperativity at neutral pH and cooperativity at alkaline pH. Data analysis according to a 12 rate constant model indicated that the rate of oxidation of the beta subunit in the first oxidation reaction was 4 times faster than the rate of oxidation of the alpha subunit at pH 6.2 and 12 times faster at pH 8.5. The reactions involving the alpha subunit were noncooperative except for the last oxidation step at acid and neutral pH, but were cooperative at alkaline pH. The reactions involving the beta subunit were partly noncooperative and partly anticooperative. These complex mechanistic patterns suggest that a simple two-state model requiring the concerted transition of the tertiary structures of the subunits from the T to the R conformation is not adequate to interpret the oxidation reaction and that tertiary structures contribute, positively and negatively, to cooperativity. A structural hypothesis is suggested to explain the difference in the reactivities of the alpha and beta subunits.
The most common allergic diseases, such as rhinitis, asthma and atopic dermatitis, are sustained by allergic inflammation, the treatment of which requires anti-inflammatory activity. Among the available treatments, allergen immunotherapy (IT) has a documented impact on allergic inflammation which persists after its discontinuation and modifies the natural course of allergy. The anti-inflammatory effects of IT, and particularly of sublingual IT (SLIT), are based on the ability to modify the phenotype of T cells which, in allergic subjects, are characterized by a prevalence of the Th2 type, with production of IL-4, IL-5, IL-13, IL-17, and IL-32 cytokines. IT-induced changes result in a Th1-type response (immune deviation) related to an increased IFN-gamma and IL-2 production or in a Th2 reduced activity, through a mechanism of anergy or tolerance. It is now known that T cell tolerance is characterized by the generation of allergen-specific Treg cells, which produce cytokines such as IL-10 and TGF-beta with immunosuppressant and/or immunoregulatory activity. Recent studies suggest that the anti-inflammatory mechanism of SLIT is similar to classical, subcutaneous IT, with a prominent role in SLIT for mucosal dendritic cells. The tolerance pattern induced by Treg accounts for the suppressed or reduced activity of inflammatory cells and for the isotypic switch of antibody synthesis from IgE to IgG, and especially to IgG4. Data obtained from biopsies clearly indicate that the pathophysiology of the oral mucosa plays a pivotal role in inducing tolerance to the sublingually administered allergen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.