This pooled analysis of the EORTC-RBG datasets confirmed the strong and independent prognostic value of uPA and PAI-1 in primary breast cancer. For patients with lymph node-negative breast cancer, uPA and PAI-1 measurements in primary tumors may be especially useful for designing individualized treatment strategies.
Gene prognostic meta-analyses should benefit from breast tumour genomic data obtained during the last decade. The aim was to develop a user-friendly, web-based application, based on DNA microarrays results, called "breast cancer Gene-Expression Miner" (bc-GenExMiner) to improve gene prognostic analysis performance by using the same bioinformatics process. bc-GenExMiner was developed as a web-based tool including a MySQL relational database. Survival analyses are performed with R statistical software and packages. Molecular subtyping was performed by means of three single sample predictors (SSPs) and three subtype clustering models (SCMs). Twenty-one public data sets have been included. Among the 3,414 recovered breast cancer patients, 1,209 experienced a pejorative event. Molecular subtyping by means of three SSPs and three SCMs was performed for 3,063 patients. Furthermore, three robust lists of stable subtyped patients were built to maximize reliability of molecular assignment. Gene prognostic analyses are done by means of univariate Cox proportional hazards model and may be conducted on cohorts split by nodal (N), oestrogen receptor (ER), or molecular subtype status. To evaluate independent prognostic impact of genes relative to Nottingham Prognostic Index and Adjuvant! Online, adjusted Cox proportional hazards models are performed. bc-GenExMiner allows researchers without specific computation skills to easily and quickly evaluate the in vivo prognostic role of genes in breast cancer by means of Cox proportional hazards model on large pooled cohorts, which may be split according to different prognostic parameters: N, ER, and molecular subtype. Prognostic analyses by molecular subtype may also be performed in three robust molecular subtype classifications.
We recently developed a user-friendly web-based application called bc-GenExMiner (http://bcgenex.centregauducheau.fr), which offered the possibility to evaluate prognostic informativity of genes in breast cancer by means of a ‘prognostic module’. In this study, we develop a new module called ‘correlation module’, which includes three kinds of gene expression correlation analyses. The first one computes correlation coefficient between 2 or more (up to 10) chosen genes. The second one produces two lists of genes that are most correlated (positively and negatively) to a ‘tested’ gene. A gene ontology (GO) mining function is also proposed to explore GO ‘biological process’, ‘molecular function’ and ‘cellular component’ terms enrichment for the output lists of most correlated genes. The third one explores gene expression correlation between the 15 telomeric and 15 centromeric genes surrounding a ‘tested’ gene. These correlation analyses can be performed in different groups of patients: all patients (without any subtyping), in molecular subtypes (basal-like, HER2+, luminal A and luminal B) and according to oestrogen receptor status. Validation tests based on published data showed that these automatized analyses lead to results consistent with studies’ conclusions. In brief, this new module has been developed to help basic researchers explore molecular mechanisms of breast cancer.Database URL:
http://bcgenex.centregauducheau.fr
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.