Background: Acute exacerbations of chronic obstructive pulmonary disease (AE-COPD) are a common cause of hospital admission. Many exacerbations are believed to be due to upper and/or lower respiratory tract viral infections, but the incidence of these infections in patients with COPD is still undetermined. Methods: Respiratory syncytial virus (RSV), influenza A and B, parainfluenza 3, and picornaviruses were detected by nested reverse transcription polymerase chain reaction (RT-PCR) in upper (nasal lavage) and lower respiratory tract specimens (induced sputum). In a 2:1 case-control set up, 85 hospitalised patients with AE-COPD and 42 patients with stable COPD admitted for other medical reasons were studied. Results: Respiratory viruses were found more often in sputum and nasal lavage of patients with AE-COPD (48/85, 56%) than in patients with stable COPD (8/42, 19%, p<0.01). The most common viruses were picornaviruses (21/59, 36%), influenza A (15/59, 25%), and RSV (13/59, 22%). When specimens were analysed separately, this difference was seen in induced sputum (exacerbation 40/85 (47%) v stable 4/42 (10%), p<0.01) but was not significant in nasal lavage (exacerbation 26/85 (31%) v stable 7/42 (17%), p=0.14). In patients with AE-COPD, fever was more frequent in those in whom viruses were detected (12/48, 25%) than in those in whom viruses were not detected (2/37, 5%, p=0.03). Conclusion: Viral respiratory pathogens are found more often in respiratory specimens of hospitalised patients with AE-COPD than in control patients. Induced sputum detects respiratory viruses more frequently than nasal lavage in these patients. These data indicate that nasal lavage probably has no additional diagnostic value to induced sputum in cross-sectional studies on hospitalised patients with AE-COPD and that the role of viral infection in these patients is still underestimated.
Respiratory syncytial virus (RSV) is known to cause acute lower respiratory tract infections (ARI) in young children and is involved in exacerbation of chronic obstructive pulmonary disease (COPD) in adults. The role of RSV in stable COPD and the viral load in different respiratory diseases has not been investigated to date.The present authors established and evaluated a quantitative TaqMan1 real-time polymerase chain reaction assay specific for RSV subgroup A. Absolute quantification for the determination of viral load input was achieved using a control plasmid. The assay allowed for a quantification over aw6-log range and a detection limit ofv10 RSV copies per reaction mixture.The assay was 30 times more sensitive than conventional nested polymerase chain reaction assays. Interassay SD was 1.3 and coefficient of variation 4.7% on average. Clinical specimens from infants with ARI (n=62) and elderly adults with COPD (n=125) were compared for viral loads. A total of 47% RSV-positive samples were found in the ARI study group and 28% in the COPD study group. The viral load of both study groups was found to differ significantly. In the ARI study group the viral load was increased almost 2000-fold, suggesting acute infection in this group and former or latent infection in the COPD group.Respiratory syncytial virus-A specific TaqMan1 real-time polymerase chain reaction assay is a sensitive and rapid method for the determination of viral load in clinical samples. It enables differential statements concerning the involvement of respiratory syncytial virus in acute lower respiratory tract infections and chronic obstructive pulmonary disease to be achieved. Eur Respir J 2003; 21: 944-951.
Nacystelyn (NAL), a recently-developed lysine salt of N-acetylcysteine (NAC), and NAG, both known to have excellent mucolytic capabilities, were tested for their ability to enhance cellular antioxidant defence mechanisms. To accomplish this, both drugs were tested in vitro for their capacity: (1) to inhibit O2- and H2O2 in cell-free assay systems; (2) to reduce O2- and H2O2 released by polymorphonuclear leukocytes (PMN); and (3) for their cellular glutathione (GSH) precursor effect. In comparison with GSH, NAL and NAC inhibited H2O2, but not O2-, in cell-free, in vitro test systems in a similar manner. The anti-H2O2 effect of these drugs was as potent as that of GSH, an important antioxidant in mammalian cells. To enhance cellular GSH levels, increasing concentrations (0-2 x 10(-4) mol l-1) of both substances were added to a transformed alveolar cell line (A549 cells). After NAC administration (2 x 10(-4) mol l-1), total intracellular GSH (GSH + 2GSSG) levels reached 4.5 +/- 1.1 x 10(-6) mol per 10(6) cells, whereas NAL increased GSH to 8.3 +/- 1.6 x 10(-6) mol per 10(6) cells. NAC and NAL administration also induced extracellular GSH secretion; about two-fold (NAC), and 1.5-fold (NAL), respectively. The GSH precursor potency of cystine was about two-fold higher than that of NAL and NAC, indicating that the deacetylation process of NAL and NAC slows the ability of both drugs to induce cellular glut production and secretion. Buthionine-sulphoximine, which is an inhibitor of GSH synthetase, blocked the cellular GSH precursor effect of all substances. In addition, these data demonstrate that NAC and NAL reduce H2O2 released by freshly-isolated cultured blood PMN from smokers with chronic obstructive pulmonary disease (COPD) (n = 10) in a similar manner (about 45% reduction of H2O2 activity by NAC or NAL at 4 x 10(-6) mol l-1). In accordance with the results obtained from cell-free, in vitro assays, O2- released by PMN was not affected. Ambroxol (concentrations: 10(-9)-10(-3) mol l-1) did not reduce activity levels of H2O2 and O2- in vitro. Due to the basic effect of dissolved lysine, which separates easily in solution from NAL, the acidic function of the remaining NAC molecule is almost completely neutralized [at concentration 2 x 10(-4) M: pH 3.6 (NAC), pH 6.4 (NAL)]. Due to their function as H2O2 scavengers, and due to their ability to enhance cellular glutathione levels, NAL and NAC both have potent antioxidant capabilities in vitro. The advantage of NAL over NAC is two-fold; it enhances intracellular GSH levels twice as effectively, and it forms neutral pH solutions whereas NAC is acidic. Concluding from these in vitro results, NAL could be an interesting alternative to enhance the antioxidant capacity at the epithelial surface of the lung by aerosol administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.