[1] Combined P and S receiver functions from seismograms of teleseismic events recorded at 65 temporary and permanent stations in the Aegean region are used to map the geometry of the subducted African and the overriding Aegean plates. We image the Moho of the subducting African plate at depths ranging from 40 km beneath southern Crete and the western Peloponnesus to 160 km beneath the volcanic arc and 220 km beneath northern Greece. However, the dip of the Moho of the subducting African plate is shallower beneath the Peloponnesus than beneath Crete and Rhodes and flattens out beneath the northern Aegean. Observed P-to-S conversions at stations located in the forearc indicate a reversed velocity contrast at the Moho boundary of the Aegean plate, whereas this boundary is observed as a normal velocity contrast by the S-to-P conversions. Our modeling suggests that the presence of a large amount of serpentinite (more than 30%) in the forearc mantle wedge, which generally occurs in the subduction zones, may be the reason for the reverse sign of the P-to-S conversion coefficient. Moho depths for the Aegean plate show that the southern part of the Aegean (crustal thickness of 20-22 km) has been strongly influenced by extension, while the northern Aegean Sea, which at present undergoes the highest crustal deformation, shows a relatively thicker crust (25-28 km). This may imply a recent initiation of the present kinematics in the Aegean. Western Greece (crustal thickness of 32-40 km) is unaffected by the recent extension but underwent crustal thickening during the Hellenides Mountains building event. The depths of the Aegean Moho beneath the margin of the Peloponnesus and Crete (25-28 and 25-33 km, respectively) show that these areas are also likely to be affected by the Aegean extension, even though the Cyclades (crustal thickness of 26-30 km) were not significantly involved in this episode. The Aegean lithosphere-asthenosphere boundary (LAB) mapped with S receiver functions is about 150 km deep beneath mainland Greece, whereas the LAB of the subducted African plate dips from 100 km beneath Crete and the southern Aegean Sea to about 225 km under the volcanic arc. This implies a thickness of 60-65 km for the subducted African lithosphere, suggesting that the Aegean lithosphere was not significantly affected by the extensional process associated with the exhumation of metamorphic core complexes in the Cyclades.
SUMMARY The lithospheric structure of the Aegean region is investigated by analysis of Rayleigh‐wave fundamental mode dispersion measurements. Isotropic 1‐D models for almost 100 two‐station ray paths across the region display distinct variations in the Moho depth and crustal S‐wave velocities. The descending slab of the subducting African plate can be resolved down to 120 km depth beneath the volcanic arc. Three different regions are distinguished in terms of Moho depth: (1) The forearc, with large crustal thicknesses between 38 and 48 km and an average of 43 km, (2) the northern Aegean, with an average Moho depth of 28 km and (3) the southern Aegean (central volcanic arc, i.e. Cyclades, and Sea of Crete) with an even thinner crust of around 25 km. Lateral variations in structure between 25 and 55 km depth indicate a marked difference between the western and eastern forearc, collocated with pronounced changes in trench and slab geometry as well as published deformation rates. S velocities between 25 and 55 km depth are low everywhere beneath the forearc but increase from the Peleponnesus to Crete. An abrupt change occurs between western and central Crete in terms of the visibility of the Aegean Moho and the seismic structure of the lithospheric mantle wedge: An Aegean mantle wedge with S velocities above 4.4 km s−1 is only observed to the east of central Crete, whereas to the west velocities of less than 4.0 km s−1 occur down to the plate contact. These low velocities above the slab may indicate the presence of a melange of metamorphic rocks at the depths. A low‐velocity asthenospheric layer is observed beneath the Sea of Crete and the Cyclades below 40 km depth, between the thinned lithosphere above and the slab below. The observed radial anisotropy in the northern part of the Aegean is likely to be due to preferred orientation of anisotropic minerals within the lower crust, possibly caused by lateral ductile flow associated with recent lithospheric extension.
In February and March 1981, three successive destructive earthquakes occurred at the eastern end of the Gulf of Corinth. The third shock (March, 4, Ms ≈ 6.4) ruptured the Kaparelli fault. About 40 cm of a limestone fault scarp was exhumed by the earthquake. Each major prehistoric earthquake has added new surface to this cumulative scarp exposing fresh material to cosmic‐ray bombardment. Using 36Cl cosmic ray exposure dating we have obtained the continuous exposure history for this 4–5‐m‐high limestone surface at two sites about 50 m apart. The results suggest that the Kaparelli fault has ruptured three times prior to 1981 at 20 ± 3 ka, 14.5 ± 0.5 ka and 10.5 ± 0.5 ka with slip amplitudes between 0.6 m and 2.1 m. The Kaparelli fault appears to have been inactive for 10 thousand years prior to the 1981 event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.