Abstract. We present the results of VLT optical spectroscopy of a complete sample of 78 EROs with R − Ks ≥ 5 over a field of 52 arcmin 2 . About 70% of the 45 EROs with Ks ≤ 19.2 have been spectroscopically identified with old passively evolving and dusty star-forming galaxies at 0.7 < z < 1.5. The two classes are about equally populated and for each of them we present and discuss the average spectrum. From the old ERO average spectrum and for Z = Z we derive a minimum age of ∼3 Gyr, corresponding to a formation redshift of z f &2.4. PLE models with such formation redshifts well reproduce the density of old EROs (consistent with being passively evolving ellipticals), whereas the predictions of the current hierarchical merging models are lower than the observed densities by large factors (up to an order of magnitude). From the average spectrum of the star-forming EROs we estimate a substantial dust extinction with E(B − V ) &0.5. The star formation rates, corrected for the average reddening, suggest a significant contribution from EROs to the cosmic star-formation density at z ∼ 1.
We present the ancillary data and basic physical measurements for the galaxies in the ALMA Large Program to Investigate C + at Early Times (ALPINE) survey − the first large multi-wavelength survey which aims at characterizing the gas and dust properties of 118 main-sequence galaxies at redshifts 2 Faisst et al. 4.4 < z < 5.9 via the measurement of [C II] emission at 158 µm and the surrounding far-infrared (FIR) continuum in conjunction with a wealth of optical and near-infrared data. We outline in detail the spectroscopic data and selection of the galaxies as well as the ground-and space-based imaging products. In addition, we provide several basic measurements including stellar masses, star formation rates (SFR), rest-frame ultra-violet (UV) luminosities, UV continuum slopes (β), and absorption line redshifts, as well as Hα emission derived from Spitzer colors. Overall, we find that the ALPINE sample is representative of the 4 < z < 6 galaxy population and only slightly biased towards bluer colors (∆β ∼ 0.2). Using [C II] as tracer of the systemic redshift (confirmed for one galaxy at z = 4.5 for which we obtained optical [O II]λ3727 µm emission), we confirm red shifted Lyα emission and blue shifted absorption lines similar to findings at lower redshifts. By stacking the rest-frame UV spectra in the [C II] rest-frame we find that the absorption lines in galaxies with high specific SFR are more blue shifted, which could be indicative of stronger winds and outflows.
Aims. We present the detailed characterisation of a sample of 56 sources serendipitously detected in ALMA band 7 as part of the ALMA Large Program to INvestigate CII at Early Times (ALPINE). These sources, detected in COSMOS and ECDFS, have been used to derive the total infrared luminosity function (LF) and to estimate the cosmic star formation rate density (SFRD) up to z ≃ 6. Methods. We looked for counterparts of the ALMA sources in all the available multi-wavelength (from HST to VLA) and photometric redshift catalogues. We also made use of deeper UltraVISTA and Spitzer source lists and maps to identify optically dark sources with no matches in the public catalogues. We used the sources with estimated redshifts to derive the 250 μm rest-frame and total infrared (8–1000 μm) LFs from z ≃ 0.5 to 6. Results. Our ALMA blind survey (860 μm flux density range: ∼0.3–12.5 mJy) allows us to further push the study of the nature and evolution of dusty galaxies at high-z, identifying luminous and massive sources to redshifts and faint luminosities never probed before by any far-infrared surveys. The ALPINE data are the first ones to sample the faint end of the infrared LF, showing little evolution from z ≃ 2.5 to z ≃ 6, and a “flat” slope up to the highest redshifts (i.e. 4.5 < z < 6). The SFRD obtained by integrating the luminosity function remains almost constant between z ≃ 2 and z ≃ 6, and significantly higher than the optical or ultra-violet derivations, showing a significant contribution of dusty galaxies and obscured star formation at high-z. About 14% of all the ALPINE serendipitous continuum sources are found to be optically and near-infrared (near-IR) dark (to a depth Ks ∼ 24.9 mag). Six show a counterpart only in the mid-IR and no HST or near-IR identification, while two are detected as [C II] emitters at z ≃ 5. The six HST+near-IR dark galaxies with mid-IR counterparts are found to contribute about 17% of the total SFRD at z ≃ 5 and to dominate the high-mass end of the stellar mass function at z > 3.
Abstract. The ROSAT Deep Surveys in the direction of the Lockman Hole are the most sensitive X-ray surveys performed with the ROSAT satellite. About 70-80% of the X-ray background has been resolved into discrete sources at a flux limit of ∼10 −15 erg cm −2 s −1 in the 0.5-2.0 keV energy band. A nearly complete optical identification of the ROSAT Deep Survey (RDS) has shown that the great majority of sources are AGNs. We describe in this paper the ROSAT Ultra Deep Survey (UDS), an extension of the RDS in the Lockman Hole. The Ultra Deep Survey reaches a flux level of 1.2 10 −15 erg cm −2 s −1 in 0.5-2.0 keV energy band, a level ∼4.6 times fainter than the RDS. We present nearly complete spectroscopic identifications (90%) of the sample of 94 X-ray sources based on low-resolution Keck spectra. The majority of the sources (57) are broad emission line AGNs (type I), whereas a further 13 AGNs show only narrow emission lines or broad Balmer emission lines with a large Balmer decrement (type II AGNs) indicating significant optical absorption. The second most abundant class of objects (10) are groups and clusters of galaxies (∼11%). Further we found five galactic stars and one "normal" emission line galaxy. Eight X-ray sources remain spectroscopically unidentified. We see no evidence for any change in population from the RDS survey to the UDS survey. The photometric redshift determination indicates in three out of the eight sources the presence of an obscured AGN. Their photometric redshifts, assuming that the spectral energy distribution (SED) in the optical/near-infrared is due to stellar processes, are in the range of 1.2 ≤ z ≤ 2.7. These objects could belong to the long-sought population of type 2 QSOs, which are predicted by the AGN synthesis models of the X-ray background. Finally, we discuss the optical and soft X-ray properties of the type I AGN, type II AGN, and groups and clusters of galaxies, and the implication to the X-ray background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.