The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by Fermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from 2007 November to 2013 January, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10 • × 10 • , finding a source extension σ ext = 1. • 8 ± 0. • 5. The observed differential energy spectrum is dN/dE = (2.5 ± 0.4) × 10 −11 (E/1 TeV) −2.6±0.3 photons cm −2 s −1 TeV −1 , in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by Fermi-LAT and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with supernova remnants (SNRs) indicates that the particle acceleration inside a superbubble is similar to that in an SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.
ARGO-YBJ is an air shower detector array with a fully covered layer of resistive plate chambers. It is operated with a high duty cycle and a large field of view. It continuously monitors the northern sky at energies above 0.3 TeV. In this paper, we report a long-term monitoring of Mrk 421 over the period from 2007 November to 2010 February. This source was observed by the satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray band. Mrk 421 was especially active in the first half of 2008. Many flares are observed in both X-ray and γ-ray bands simultaneously. The γ-ray flux observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag between the X-ray and γ-ray photons longer than 1 day is found. The evolution of the spectral energy distribution is investigated by measuring spectral indices at four different flux levels. Hardening of the spectra is observed in both X-ray and γ-ray bands. The γ-ray flux increases quadratically with the simultaneously measured X-ray flux. All these observational results strongly favor the synchrotron self-Compton process as the underlying radiative mechanism.
The events recorded by ARGO-YBJ in more than fiveyears of data collection have been analyzed to determine the diffuse gamma-ray emission in the Galactic plane at Galactic longitudes 25°< l < 100°and Galactic latitudes b 5 | | <°. The energy range covered by this analysis, from ∼350 GeV to ∼2 TeV, allows the connection of the region explored by Fermi with the multi-TeV measurements carried out by Milagro. Our analysis has been focused on two selected regions of the Galactic plane, i.e., 40°< l < 100°and 65°< l < 85°(the Cygnus region), where Milagro observed an excess with respect to the predictions of current models. Great care has been taken in order to mask the most intense gamma-ray sources, including the TeV counterpart of the Cygnus cocoon recently identified by ARGO-YBJ, and to remove residual contributions. The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding to the excess found by Milagro, and are consistent with the predictions of the Fermi model for the diffuse Galactic emission. From the measured energy distribution we derive spectral indices and the differential flux at 1 TeV of the diffuse gamma-ray emission in the sky regions investigated.
Measuring the anisotropy of the arrival direction distribution of cosmic rays provides important information on the propagation mechanisms and the identification of their sources. In fact, the flux of cosmic rays is thought to be dependent on the arrival direction only due to the presence of nearby cosmic ray sources or particular magnetic-field structures. Recently, the observation of unexpected excesses at TeV energy down to an angular scale as narrow as raised the possibility that the problem of the origin of Galactic cosmic rays may be addressed by studying the anisotropy. The ARGO-YBJ experiment is a full-coverage extensive air showers array, sensitive to cosmic rays with the energy threshold of a few hundred GeV. Searching for small-size deviations from the isotropy, the ARGO-YBJ Collaboration explored the declination region , making use of about events collected from November 2007 to May 2012. In this paper, the detection of different significant (up to 13 standard deviations) medium-scale anisotropy regions in the arrival directions of cosmic rays is reported. The observation was performed with unprecedented detail. The relative excess intensity with respect to the isotropic flux extends up to . The maximum excess occurs for proton energies of 10–20 TeV, suggesting the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, or some contribution of nearby sources never considered so far. The observation of new weaker few-degree excesses throughout the sky region is reported for the first time
We report the observation of TeV γ -rays from the Cygnus region using the ARGO-YBJ data collected from 2007 November to 2011 August. Several TeV sources are located in this region including the two bright extended MGRO J2019+37 and MGRO J2031+41. According to the Milagro data set, at 20 TeV MGRO J2019+37 is the most significant source apart from the Crab Nebula. No signal from MGRO J2019+37 is detected by the ARGO-YBJ experiment, and the derived flux upper limits at the 90% confidence level for all the events above 600 GeV with medium energy of 3 TeV are lower than the Milagro flux, implying that the source might be variable and hard to be identified as a pulsar wind nebula. The only statistically significant (6.4 standard deviations) γ -ray signal is found from MGRO J2031+41, with a flux consistent with the measurement by Milagro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.