Peripheral-type benzodiazepine receptor (PBR) is an 18 kDa high-affinity drug ligand and cholesterol binding protein involved in various cell functions. Antisera for distinct PBR areas identified immunoreactive proteins of 18, 40, and 56 kDa and occasionally 72, 90, and 110 kDa in testicular Leydig and breast cancer cells. These sizes may correspond to PBR polymers and correlated to the levels of reactive oxygen species. Treatment of Leydig cells with human chorionic gonadotropin rapidly induced free radical, PBR polymer, and steroid formation. UV photoirradiation generates ROS species, which increased the size of intramembraneous particles of recombinant PBR reconstituted into proteoliposomes consistent with polymer formation, determined both by SDS-PAGE and by freeze-fracture electron microscopy. Spectroscopic analysis revealed the formation of dityrosines as the covalent cross-linker between PBR monomers. Moreover, photoirradiation increased PK 11195 drug ligand binding and reduced cholesterol binding capacity of proteoliposomes. Further addition of PK 11195 drug ligand to polymers increased the rate of cholesterol binding. These data indicate that reactive oxygen species induce in vivo and in vitro the formation of covalent PBR polymers. We propose that the PBR polymer might be the functional unit responsible for ligand-activated cholesterol binding and that PBR polymerization is a dynamic process modulating the function of this receptor in cholesterol transport and other cell-specific PBR-mediated functions.
Leptin, the product of the ob gene, plays a key role in the regulation of food intake via a cross-talk between hypothalamic leptin receptors and neuropeptides that affect feeding behaviour. Recent studies have shown a synergistic interaction between leptin and cholecystokinin (CCK) leading to suppression of food intake, which involves CCK-1 receptors and capsaicin-sensitive vagal fibres. In this study, we have investigated the presence of leptin receptors in afferent and efferent neurons of the vagus nerve. By using reverse transcription-polymerase chain reaction, mRNAs encoding long (Ob-Rb) and short (Ob-Ra) leptin receptor isoforms were detected in the rat nodose ganglion, which contains the cell bodies of the vagal afferent neurons. Western blot analysis confirmed the presence of leptin receptor-immunoreactive proteins in extracts from the vagal trunk. Immunohistochemistry showed the presence of leptin receptors and the leptin-induced transcription factor STAT3 in the cytoplasm of nodose ganglion cells. In cervical vagal segments, levels of leptin receptor protein displayed physiological regulation, with decreased amounts after feeding and increased levels after food restriction. In addition, leptin receptor and STAT3 immunoreactivities were detected in neurons of the nucleus of tractus solitarius (NTS) and the dorsal motor nucleus of the vagus nerve (DMNX) by immunofluorescence histochemistry. Furthermore, direct double-labelling demonstrated colocalization of Ob-Rb and STAT3 immunoreactivities in cholinergic vagal efferent cell bodies of the DMNX. It is speculated that vagal leptin receptors, apart from being activated by adipocyte-derived leptin, may also be influenced by leptin produced by the stomach. This may explain the synergistic action of leptin and CCK on neuronal activity in the NTS and on food intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.