We use three-dimensional hydrodynamical simulations to study the rapid infall phase of the common envelope interaction of a red giant branch star of mass equal to 0.88 M and a companion star of mass ranging from 0.9 down to 0.1 M . We first compare the results obtained using two different numerical techniques with different resolutions, and find overall very good agreement. We then compare the outcomes of those simulations with observed systems thought to have gone through a common envelope. The simulations fail to reproduce those systems in the sense that most of the envelope of the donor remains bound at the end of the simulations and the final orbital separations between the donor's remnant and the companion, ranging from 26.8 down to 5.9 R , are larger than the ones observed. We suggest that this discrepancy vouches for recombination playing an essential role in the ejection of the envelope and/or significant shrinkage of the orbit happening in the subsequent phase.
Depending on mass and metallicity as well as evolutionary phase, stars occasionally experience convectivereactive nucleosynthesis episodes. We specifically investigate the situation when nucleosynthetically unprocessed, H-rich material is convectively mixed with a He-burning zone, for example in convectively unstable shell on top of electron-degenerate cores in AGB stars, young white dwarfs or X-ray bursting neutron stars. Such episodes are frequently encountered in stellar evolution models of stars of extremely low or zero metal content, such as the first stars. We have carried out detailed nucleosynthesis simulations based on stellar evolution models and informed by hydrodynamic simulations. We focus on the convective-reactive episode in the very-late thermal pulse star Sakurai's object (V4334 Sagittarii). Asplund et al. (1999) determined the abundances of 28 elements, many of which are highly non-solar, ranging from H, He and Li all the way to Ba and La, plus the C isotopic ratio. Our simulations show that the mixing evolution according to standard, one-dimensional stellar evolution models implies neutron densities in the He intershell ( few 10 11 cm −3 ) that are too low to obtain a significant neutron capture nucleosynthesis on the heavy elements. We have carried out 3D hydrodynamic He-shell flash convection simulations in 4π geometry to study the entrainment of H-rich material. Guided by these simulations we assume that the ingestion process of H into the He-shell convection zone leads only after some delay time to a sufficient entropy barrier that splits the convection zone into the original one driven by He-burning and a new one driven by the rapid burning of ingested H. By making such mixing assumptions that are motivated by our hydrodynamic simulations we obtain significantly higher neutron densities (∼ few 10 15 cm −3 ) and reproduce the key observed abundance trends found in Sakurai's object. These include an overproduction of Rb, Sr and Y by about 2 orders of magnitude higher than the overproduction of Ba and La. Such a peculiar nucleosynthesis signature is impossible to obtain with the mixing predictions in our one-dimensional stellar evolution models. The simulated Li abundance and the isotopic ratio 12 C/ 13 C are as well in agreement with observations. Details of the observed heavy element abundances can be used as a sensitive diagnostic tool for the neutron density, for the neutron exposure and, in general, for the physics of the convective-reactive phases in stellar evolution. For example, the high elemental ratio Sc/Ca and the high Sc production indicate high neutron densities. The diagnostic value of such abundance markers depends on uncertain nuclear physics input. We determine how our results depend on uncertainties of nuclear reaction rates, for example for the 13 C(α, n) 16 O reaction. 10 Although even in this case multi-dimensional effects of convection have to be taken into account eventually as simulations by indicate that the velocity profile at the bottom of the convective shell is ...
We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low-and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low-and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the C 13 pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced.
We compare a suite of three-dimensional explosion calculations and stellar models incorporating advanced physics with observational constraints on the progenitor of Cassiopeia A. We consider binary and single stars from 16 to 40 M with a range of explosion energies and geometries. The parameter space allowed by observations of nitrogen-rich highvelocity ejecta, ejecta mass, compact remnant mass, and 44 Ti and 56 Ni abundances individually and as an ensemble is considered. A progenitor of 15-25 M that loses its hydrogen envelope to a binary interaction and undergoes an energetic explosion can match all the observational constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.