Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD remains a major public health burden, affecting 10–15% of the population, and its prevalence is constantly growing. Due to its insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue, and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between CKD and renal malignancy, raised on the background of an inflammatory condition.
Targeted delivery of dexamethasone to macrophages using a humanized CD163 antibody as carrier exhibits anti-inflammatory effects comparable with 50 times higher concentrations of free dexamethasone and does not inhibit endogenous cortisol production. This antibody-drug complex showing similar affinity and specificity for human CD163 is, therefore, a promising drug candidate in this novel type of anti-inflammatory therapy.
Abstract. cervical cancer is a leading cause of mortality in women. Molecular and epidemiological data have unequivocally confirmed that high-risk human papillomaviruses (HPVs) are a major etiological agent of this malignancy, as host epigenetic alterations are induced in response to viral infection. The present study evaluated the methylation status of cpG islands surrounding miR-124a, miR-34b and miR-203 in 29 cervical cancer precursor lesions, 31 cervical tumors and 30 normal control samples, with the aim of identifying potential markers of cervical cancer. Direct quantitative methylation-specific PCR (qMSP) was used to evaluate the degree of methylation in the samples. HPV DNA was detected and genotyped using the Linear Array HPV Genotyping Test. Data were statistically analyzed using the Kruskal-Wallis test. Differences in miRNA hypermethylation between the tumor and control samples were highly significant for all the genes tested (p<0.0001). Significant results were also obtained regarding the hypermethylation of miR-124a and miR-203 in the precursor lesions compared to the control samples. among the 29 patients with precursor lesions, 68.97% (20/29) presented high risk (hr)-HPV genotypes and 31.03% (9/29) were diagnosed with low risk (lr)-HPV. Significant results (p=0.0266) were obtained for miR-124a (hr-HPV group, mean 41.32; lr-HPV group, mean 6.74), revealing a strong association between the methylation process and the hr-HPV genotype. Borderline results (p=0.058) were obtained for miR-203 (hr-HPV group, mean 44.05; lr-HPV group, mean 3.33). These results confirm the involvement of epigenetic alterations in cervical oncogenesis. The lr-HPV precursor lesions had a methylation percent pattern similar to that of the normal samples, while the results for the hr-HPV precursor lesions and tumors indicate a possible involvement of the hr-HPV genotype in the miRNA methylation process.
Alterations in DNA methylation patterns in several genes may lead to abnormal male sexual development and infertility. This study investigated the promoter methylation status of MTHFR and SNRPN in infertile men from Romania by quantitative methylation-specific PCR in order to investigate possible correlations with sperm abnormalities. The study groups included patients (n=27) with a median age of 31 years (range 26-41 years) as well as controls (n=11) with a median age of 30 years (range 24-37 years) recruited from couples seeking advice for infertility. DNA was isolated from sperm samples and promoter methylation was assessed using direct. Significant trends were detected for both genes that indicate a tendency towards promoter hypermethylation in spermatozoa with low motility (MTHFR P=0.0032, r=0.23; SNRPN P=0.0003, r=0.32) and poor morphology (MTHFR P=0.0012, r=0.27; SNRPN P=0.0003, r=0.33) but no trend was found in cases of low sperm count (MTHFR r=0.007; SNRPN r=0.06). The data indicate that the methylation patterns of the promoters of MTHFR and SNRPN are associated with changes in sperm motility and morphology, which could lead to male infertility. A large number of studies are now focused on the causes of male infertility. Among these are epigenetic modifications, which are important contributors to reproductive pathology in the male by providing dynamic changes of the phenotype according to the environmental and metabolic factors. The most known epigenetic modification is DNA methylation and alterations in this pattern in several genes could induce male infertility. The present study aims to investigate the promoter methylation status of the genes for methylene tetrahydrofolate reductase (MTHFR) and small nuclear ribonucleoprotein polypeptide N (SNRPN) in infertile males from Romania, in order to establish a correlation with sperm parameters. MTHFR is an enzyme involved in the folate pathway and in de novo nucleotide biosynthesis but also a good example for gene-environment interaction in phenotype development. SNRPN is involved in both somatic cell expression and inheritance of the imprint and the methylation pattern of its gene seems to correlate not only with imprinted disorders but also with infertility. Our study includes patients (n=27, median age 31 years, range 26-41 years) recruited from men seeking advice for couple infertility and control group (n=11, median age 30.5 years, range 24-37 years). The data we obtained indicated significant correlations between hypermethylation of the investigated genes and sperm motility and morphology. No significant correlation between DNA methylation and sperm number was found. Our data suggest that methylation pattern of MTHFR and SNRPN is linked with sperm anomalies of motility and morphology and therefore male infertility.
Chronic kidney disease, despite being a “silent epidemic” disease, represents one of the main causes of mortality in general population, along with cardiovascular disease, which is the leading cause of poor prognosis for these patients. The specific objective of our study was to characterize the relationship between the inflammatory status, the bone disorders markers, and kidney failure in chronic kidney disease patient stages 2–4, in order to design a novel biomarker panel that improves early disease diagnosis and therapeutic response, thus being further integrated into clinical applications. A panel of proteomic biomarkers, assessed by xMAP array, which includes mediators of inflammation (IL-6, TNF-α) and mineral and bone disorder biomarkers (OPG, OPN, OCN, FGF-23, and Fetuin-A), was found to be more relevant than a single biomarker to detect early CKD stages. The association between inflammatory cytokines and bone disorders markers, IL-6, TNF-α, OPN, OPG, and FGF-23, reflects the severity of vascular changes in CKD and predicts disease progression. Proteomic xMAP analyses shed light on a new approach to clinical evaluation for CKD staging and prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.