Curcumin is the main constituent of turmeric, a seasoning popularized around the world with Indian cuisine. Among the benefits attributed to curcumin are anti-inflammatory, antimicrobial, antitumoral, and chemopreventive effects. Besides, curcumin inhibits the growth of the gram-positive bacterium Bacillus subtilis. The anti-B. subtilis action happens by interference with the division protein FtsZ, an ancestral tubulin widespread in Bacteria. FtsZ forms protofilaments in a GTP-dependent manner, with the concomitant recruitment of essential factors to operate cell division. By stimulating the GTPase activity of FtsZ, curcumin destabilizes its function. Recently, curcumin was shown to promote membrane permeabilization in B. subtilis. Here, we used molecular simplification to dissect the functionalities of curcumin. A simplified form, in which a monocarbonyl group substituted the β-diketone moiety, showed antibacterial action against gram-positive and gram-negative bacteria of clinical interest. The simplified curcumin also disrupted the divisional septum of B. subtilis; however, subsequent biochemical analysis did not support a direct action on FtsZ. Our results suggest that the simplified curcumin exerted its function mainly through membrane permeabilization, with disruption of the membrane potential necessary for FtsZ intra-cellular localization. Finally, we show here experimental evidence for the requirement of the β-diketone group of curcumin for its interaction with FtsZ.
Because of the activity of 3'-hydroxychalcone against C. gattii in vitro, molecular modifications should be made to improve efficacy and to reduce toxicity in vivo. [Formula: see text].
Naturally-occurring chalcones and synthetic chalcone analogues have been demonstrated to have many biological effects, including anti-inflammatory, anti-malarial, anti-fungal, and anti-oxidant/anti-cancerous activities. Compared to other chalcones, trans-chalcone exhibits superior inhibitory activity in cancer cell growth as shown via in vitro assays, and exerts anti-cancerous effects via the activation of the p53 tumor suppressor protein. Thus, characterization of the specific mechanisms, by which trans-chalcone activates p53, can aid development of new chemotherapeutic drugs that can be used individually or synergistically with other drugs. In this report, we found that trans-chalcone modulates many p53 target genes, HSP40 being the most induced gene in the RNA-Seq data using trans-chalcone-treated cells. CRM1 is also inhibited by trans-chalcone, resulting in the accumulation of p53 and other tumor suppressor proteins in the nucleus. Similar effects were seen using trans-chalcone derivatives. Overall, trans-chalcone could provide a strong foundation for the development of chalcone-based anti-cancer drugs.
Aim: This study aimed to evaluate the activity of 2′-hydroxychalcone-loaded in nanoemulsion (NLS + 2′chalc), the cytotoxic effect and toxicity against Paracoccidioides brasiliensis and Paracoccidioides lutzii using a zebrafish model. Materials & methods: Preparation and physical-chemical characterization of nanoemulsion (NLS) and NLS + 2′chalc were performed. MIC and minimum fungicide concentration, cytotoxicity and toxicity were also evaluated in the Danio rerio model. Results: NLS + 2′chalc showed fungicidal activity against Paracoccidioides spp. without cytotoxicity in MRC5 and HepG2 lines. It also had high selectivity index values and no toxicity in the zebrafish model based on MIC values. Conclusion: NLS + 2′chalc is a potential new alternative treatment for paracoccidioidomycosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.