Pressure-flow relationships measured in human plastinated specimen of both nasal cavities and maxillary sinuses were compared to those obtained by numerical airflow simulations in a numerical three-dimensional reconstruction issued from CT scans of the plastinated specimen. For experiments, flow rates up to 1,500 ml/s were tested using three different gases: HeO(2), Air, and SF(6). Numerical inspiratory airflow simulations were performed for flow rates up to 353 ml/s in both the nostrils using a finite-volume-based method under steady-state conditions with CFD software using a laminar model. The good agreement between measured and numerically computed total pressure drops observed up to a flow rate of 250 ml/s is an important step to validate the ability of CFD software to describe flow in a physiologically realistic binasal model. The major total pressure drop was localized in the nasal valve region. Airflow was found to be predominant in the inferior median part of nasal cavities. Two main vortices were observed downstream from the nasal valve and toward the olfactory region. In the future, CFD software will be a useful tool for the clinician by providing a better understanding of the complexity of three-dimensional breathing flow in the nasal cavities allowing more appropriate management of the patient's symptoms.
Computational fluid dynamics (CFD) and magnetic resonance (MR) gas velocimetry were concurrently performed to study airflow in the same model of human proximal airways. Realistic in vivo-based human airway geometry was segmented from thoracic computed tomography. The three-dimensional numerical description of the airways was used for both generation of a physical airway model using rapid prototyping and mesh generation for CFD simulations. Steady laminar inspiratory experiments (Reynolds number Re = 770) were performed and velocity maps down to the fourth airway generation were extracted from a new velocity mapping technique based on MR velocimetry using hyperpolarized (3)He gas. Full two-dimensional maps of the velocity vector were measured within a few seconds. Numerical simulations were carried out with the experimental flow conditions, and the two sets of data were compared between the two modalities. Flow distributions agreed within 3%. Main and secondary flow velocity intensities were similar, as were velocity convective patterns. This work demonstrates that experimental and numerical gas velocity data can be obtained and compared in the same complex airway geometry. Experiments validated the simulation platform that integrates patient-specific airway reconstruction process from in vivo thoracic scans and velocity field calculation with CFD, hence allowing the results of this numerical tool to be used with confidence in potential clinical applications for lung characterization. Finally, this combined numerical and experimental approach of flow assessment in realistic in vivo-based human airway geometries confirmed the strong dependence of airway flow patterns on local and global geometrical factors, which could contribute to gas mixing.
Purpose: Non-invasive ventilation is largely used to treat acute and chronic respiratory failure. This ventilation encounters a nonnegligible rate of failure related to the used interface/mask, but the reasons for this failure remain unclear. In order to shed light on this issue and to better understand the effects of the geometrical design of interfaces, we aimed to quantify flow, pressure and gas composition in terms of CO 2 and O 2 at the passage through different types of interface (oronasal mask, integral mask and helmet). In particular, we postulated that due to specific gas flow passing throughout the interface, the effective dead space added by the interface is not always related to the whole gas volume included in the interface. Methods: Numerical simulations, using computational fluid dynamics, were used to describe pressure, flow and gas composition during ventilation with the different interfaces. Results: Between the different interfaces the effective dead spaces differed only modestly (110-370 ml), whereas their internal volumes were markedly different (110-10,000 ml).
We have developed a discrete multisegmental model describing the coupling between inspiratory flow and nasal wall distensibility. This model is composed of 14 individualized compliant elements, each with its own relationship between cross-sectional area and transmural pressure. Conceptually, this model is based on flow limitation induced by the narrowing of duct due to collapsing pressure. For a given inspiratory pressure and for a given compliance distribution, this model predicts the area profile and inspiratory flow. Acoustic rhinometry and posterior rhinomanometry were used to determine the initial geometric area and mechanical characteristics of each element. The proposed model, used under steady-state conditions, is able to simulate the pressure-flow relationship observed in vivo under normal conditions (4 subjects) and under pathological conditions (4 vasomotor rhinitis and 3 valve syndrome subjects). Our results suggest that nasal wall compliance is an essential parameter to understand the nasal inspiratory flow limitation phenomenon and the associated increase of resistance that is well known to physiologists. By predicting the functional pressure-flow relationship, this model could be a useful tool for the clinician to evaluate the potential effects of treatments.
Detailed description of the flow field in human airways is highly important to better understand human breathing and provide a patient's customized diagnosis. An integrated numerical simulation platform is presently proposed in order to incorporate medical images into a numerical software to calculate flow field and to analyze it in terms of fluid dynamics. The platform was set up to compute steady inspiratory airflow in realistic human airways reconstructed from tomodensitometric medical images at resting breathing conditions. This morpho-functional simulation platform has been tested retrospectively with two CT-scanned patient airway morphological models: (i) a normal airway model (subject A) with no evidence of morphological alteration and (ii) a highly altered airway model (subject B) exhibiting a severe stenosis in the right main bronchus. First, various morphological aspects proper to each airway model are provided to show the performance and interest of the reconstruction method. Second, we describe the three-dimensional flow patterns associated to the global morphological features, which are mainly shared by the present realistic models and previous idealistic airway models. Finally, the flow characteristics associated to local morphological features specific to realistic airway models are discussed. The results demonstrate that the morpho-functional simulation platform is able to capture the main features of airway velocity patterns but also more specific airflow patterns which are related to customized patient morphological features such as laminar vortex formation. The present results suggest that the proposed airway functional imaging platform is adequate to provide most of functional information related to airflow and enable a patient to patient diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.