Here we show that pemetrexed-treated mesothelioma cells undergo accelerated senescence. This is characterized by the secretion of proinflammatory and mitogenic cytokines, reminiscent of an SASP (senescence-associated secretory phenotype). Conditioned media from senescent MPM (malignant pleural mesothelioma) cells trigger the emergence of EMT (epithelial-to-mesenchymal)-like, clonogenic and chemoresistant cell subpopulations, expressing high levels of ALDH (aldehyde dehydrogenase) activity (ALDH bright cells). We show by fluorescence-activated cell sorting of purified ALDH bright and ALDH low cells, that both cell-autonomous and cell-non-autonomous mechanisms converge to maintain the SASP-induced, EMT-like cell subpopulations. Chemoresistant ALDH bright cells exist within primary MPM specimens and enrichment for ALDH bright cells correlates with an earlier tumor onset into NOD/SCID mice. We show that RAS v12 expression induces SASP-like changes in untransformed human mesothelial cells, and that p53 ablation increases the effect of RAS v12 expression. We identify STAT3 activation as a crucial event downstream to SASP signaling. In fact, small hairpin RNA-mediated ablation of STAT3 deeply attenuates the induction of EMT genes and the increase of ALDH bright cells induced by SASP-cytokines. This strongly affects the chemoresistance of MPM cells in vitro and leads to anticancer effects in vivo.
By using human melanoma and glioblastoma cell lines and their derivative BCL-XL overexpressing clones, we investigated the role of BCL-XL in aggressive features of these two tumor histotypes. We found that in both models, BCL-XL overexpression increased in vitro cell migration and invasion and facilitated tumor cells to form de novo vasculogenic structures. Furthermore, BCL-XL overexpressing cells exhibited higher tumors sphere formation capacity and expressed higher levels of some stem cell markers, supporting the concept that BCL-XL plays essential roles in the maintenance of cancer stem cell phenotype. BCL-XL expression reduction by siRNA, the exposure to a BCL-XL-specific inhibitor and the use of a panel of human melanoma cell lines corroborated the evidence that BCL-XL regulates tumor progression-associated properties. Finally, the vascular markers and the vasculogenic mimicry were up-regulated in the BCL-XL overexpressing xenografts derived from both tumor histotypes. In conclusion, our work brings further support to the understanding of the malignant actions of BCL-XL and, in particular, to the concept that BCL-XL promotes stemness and contributes to the aggressiveness of both melanoma and glioblastoma.
We identified a discrete number of microRNAs differentially expressed in benign or malignant mesothelial tissues. We focused on mir-145 whose levels were significantly downregulated in malignant mesothelial tissues and Malignant pleural mesothelioma (MPM) cell lines as compared to benign tissues (pleura, peritoneum or cysts). We show that promoter hyper-methylation caused very low levels in MPM cell lines. Treatment of MPM cell lines with mir-145 agonists negatively modulated some protumorigenic properties of MPM cells, such as clonogenicity, cell migration and resistance to pemetrexed treatment. The main effector mechanism of the clonogenic death induced by mir-145 was that of accelerated senescence. We found that mir-145 targeted OCT4 via specific binding to its 3’-UTR. Increased intracellular levels of mir-145 decreased the levels of OCT4 and its target gene ZEB1 thereby counteracting the increase of OCT4 induced by pemetrexed treatment which is known to favor the development of chemoresistant cells. In line with this, reintroduction of OCT4 into mimic-145 treated cells counteracted the effects on clonogenicity and replicative senescence. This further supports the relevance of the mir-145-OCT4 interaction for the survival of MPM cells. The potential use of mir-145 expression levels to classify benign vs malignant mesothelial tissues and the differences between pemetrexed-induced senescence and that induced by the re-expression of mir-145 are discussed.
BackgroundLung cancer represents the most frequent cause of death for cancer. In non-small cell lung cancer (NSCLC), which accounts for the vast majority of this disease, only early detection and treatment, when possible, may significantly affect patient's prognosis. An important role in NSCLC malignancy is attributed to the signal transduction pathways involving PI3Kinase, with consequent activation of the AKT family factors. The serum and glucocorticoid kinase (SGK) factors, which share high structural and functional homologies with the AKT factors, are a family of ubiquitously expressed serine/threonine kinases under the control of cellular stress and hormones. SGK1 is the most represented SGK member.MethodsBy means of immunohistochemistry and quantitative real-time PCR, we determined SGK1 protein and mRNA expression in a cohort of 66 formalin-fixed, paraffin-embedded NSCLC surgical samples. All samples belonged to patients with a well-documented clinical history.ResultsmRNA expression was significantly higher in squamous cell carcinomas, and correlated with several clinical prognostic indicators, being elevated in high-grade tumors and in tumors with bigger size and worse clinical stage. No correlation was found between SGK1 protein expression and these clinical parameters.ConclusionsThis explorative analysis of SGK1 expression in NSCLC samples highlights the potential role of this factor in NSCLC patients' prognosis. Moreover, the higher expression in the squamous cell carcinoma subtype opens new therapeutic possibilities in this NSCLC subtype by designing specific kinase inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.